The mechanism of dynamic wetting and the fluid dynamics during the onset of droplet mobilization driven by a microchannel flow are not clearly understood. In this work, we use microparticle tracking velocimetry to visualize the velocity distribution inside the droplet both prior to and during mobilization. Time-averaged and instantaneous velocity vectors are determined using fluorescent microscopy for various capillary numbers. A circulating flow exists inside the droplet at a subcritical capillary number, in which case the droplet is pinned to the channel walls. When the capillary number exceeds a critical value, droplet mobilization occurs, and this process can be divided into two stages. In the first stage, the location of the internal circulation vortex center moves to the rear of the droplet and the droplet deforms, but the contact lines at the top walls remain fixed. In the second stage, the droplet rolls along the solid wall, with fixed contact angles keeping the vortex center in the rear part of the droplet. The critical capillary number for the droplet mobilization is larger for the droplet fluid with a larger viscosity. A force-balance model of the droplet, considering the effect of fluid properties, is formulated to explain the experimental trends of advancing and receding contact angles with the capillary number. Numerical simulations on internal circulations for the pinned droplet indicate that the reversed flow rate, when normalized by the inlet flow rate and the kinematic viscosity ratio of the wetting and nonwetting phases, is independent of the capillary number and the droplet composition.

1.
S.-Y.
Teh
,
R.
Lin
,
L.-H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
(
2
),
198
220
(
2008
).
2.
O.
Cybulski
,
P.
Garstecki
, and
B.
Grzybowski
, “
Oscillating droplet trains in microfluidic networks and their suppression in blood flow
,”
Nat. Phys.
15
,
706
(
2019
).
3.
P. M.
Korczyk
,
V.
van Steijn
,
S.
Blonski
,
D.
Zaremba
,
D. A.
Beattie
, and
P.
Garstecki
, “
Accounting for corner flow unifies the understanding of droplet formation in microfluidic channels
,”
Nat. Commun.
10
(
1
),
2528
(
2019
).
4.
X.
Chen
and
M. M.
Derby
, “
Droplet departure modeling and a heat transfer correlation for dropwise flow condensation in hydrophobic mini-channels
,”
Int. J. Heat Mass Transfer
125
,
1096
1104
(
2018
).
5.
X.
Zhang
and
Y.
Qin
, “
Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface
,”
J. Colloid Interface Sci.
545
,
231
241
(
2019
).
6.
X.
Li
,
L.
He
,
Y.
He
,
H.
Gu
, and
M.
Liu
, “
Numerical study of droplet formation in the ordinary and modified T-junctions
,”
Phys. Fluids
31
(
8
),
082101
(
2019
).
7.
I.
Chakraborty
,
J.
Ricouvier
,
P.
Yazhgur
,
P.
Tabeling
, and
A. M.
Leshansky
, “
Droplet generation at Hele-Shaw microfluidic T-junction
,”
Phys. Fluids
31
(
2
),
022010
(
2019
).
8.
X.
Noblin
,
R.
Kofman
, and
F.
Celestini
, “
Ratchetlike motion of a shaken drop
,”
Phys. Rev. Lett.
102
(
19
),
194504
(
2009
).
9.
A.
Ahmed
,
B. A.
Fleck
, and
P. R.
Waghmare
, “
Maximum spreading of a ferrofluid droplet under the effect of magnetic field
,”
Phys. Fluids
30
(
7
),
077102
(
2018
).
10.
S.
Santra
,
S.
Das
, and
S.
Chakraborty
, “
Electric field-induced pinch-off of a compound droplet in Poiseuille flow
,”
Phys. Fluids
31
(
6
),
062004
(
2019
).
11.
C.
Furmidge
, “
Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention
,”
J. Colloid Sci.
17
(
4
),
309
324
(
1962
).
12.
J.
Xie
,
J.
Xu
,
W.
Shang
, and
K.
Zhang
, “
Mode selection between sliding and rolling for droplet on inclined surface: Effect of surface wettability
,”
Int. J. Heat Mass Transfer
122
,
45
58
(
2018
).
13.
B.
Wang
,
S.
Zhang
, and
X.
Chen
, “
Deformation dynamics and breakup criteria of confined fluid threads in motion
,”
Phys. Fluids
31
(
12
),
121702
(
2019
).
14.
G.
Seevaratnam
,
H.
Ding
,
O.
Michel
,
J.
Heng
, and
O.
Matar
, “
Laminar flow deformation of a droplet adhering to a wall in a channel
,”
Chem. Eng. Sci.
65
(
16
),
4523
4534
(
2010
).
15.
J.
Fan
,
M.
Wilson
, and
N.
Kapur
, “
Displacement of liquid droplets on a surface by a shearing air flow
,”
J. Colloid Interface Sci.
356
(
1
),
286
292
(
2011
).
16.
S.
Madani
and
A.
Amirfazli
, “
Oil drop shedding from solid substrates by a shearing liquid
,”
Colloids Surf., A
441
,
796
806
(
2014
).
17.
B.
Barwari
,
S.
Burgmann
,
A.
Bechtold
,
M.
Rohde
, and
U.
Janoske
, “
Experimental study of the onset of downstream motion of adhering droplets in turbulent shear flows
,”
Exp. Therm. Fluid Sci.
109
,
109843
(
2019
).
18.
B.
Barwari
,
S.
Burgmann
, and
U.
Janoske
, “
Hydrodynamic instabilities of adhering droplets due to a shear flow in a rectangular channel
,”
Chem. Ing. Tech.
91
(
7
),
991
1000
(
2019
).
19.
H.
Lu
,
X.
Xu
,
L.-s.
Xie
,
H.-l.
Wang
,
G.-n.
Sun
, and
Q.
Yang
, “
Deformation and crawling of oil drop on solid substrates by shearing liquid
,”
Chem. Eng. Sci.
195
,
720
729
(
2019
).
20.
H.
Kinoshita
,
S.
Kaneda
,
T.
Fujii
, and
M.
Oshima
, “
Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV
,”
Lab Chip
7
(
3
),
338
346
(
2007
).
21.
A.
Al-Sharafi
and
B. S.
Yilbas
, “
Thermal and flow analysis of a droplet heating by multi-walls
,”
Int. J. Therm. Sci.
138
,
247
262
(
2019
).
22.
G.
Yang
,
A.
Terzis
,
I.
Zarikos
,
S. M.
Hassanizadeh
,
B.
Weigand
, and
R.
Helmig
, “
Internal flow patterns of a droplet pinned to the hydrophobic surfaces of a confined microchannel using micro-PIV and VOF simulations
,”
Chem. Eng. J.
370
,
444
454
(
2019
).
23.
3M, URL: http://www.3m.com,
2019
.
24.
A.
Terzis
,
I.
Zarikos
,
K.
Weishaupt
,
G.
Yang
,
X.
Chu
,
R.
Helmig
, and
B.
Weigand
, “
Microscopic velocity field measurements inside a regular porous medium adjacent to a low Reynolds number channel flow
,”
Phys. Fluids
31
(
4
),
042001
(
2019
).
25.
C.
Extrand
, “
Contact angles and their hysteresis as a measure of liquid-solid adhesion
,”
Langmuir
20
(
10
),
4017
4021
(
2004
).
26.
K.
Grundke
, “
Surface-energetic properties of polymers in controlled architecture
,” in
Molecular Interfacial Phenomena of Polymers and Biopolymers
(
Elsevier
,
2005
), pp.
323
374
.
27.
B.
Lafaurie
,
C.
Nardone
,
R.
Scardovelli
,
S.
Zaleski
, and
G.
Zanetti
, “
Modelling merging and fragmentation in multiphase flows with SURFER
,”
J. Comput. Phys.
113
(
1
),
134
147
(
1994
).
28.
D. A.
Hoang
,
V.
van Steijn
,
L. M.
Portela
,
M. T.
Kreutzer
, and
C. R.
Kleijn
, “
Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method
,”
Comput. Fluids
86
,
28
36
(
2013
).
30.
S. S.
Deshpande
,
L.
Anumolu
, and
M. F.
Trujillo
, “
Evaluating the performance of the two-phase flow solver interFoam
,”
Comput. Sci. Discovery
5
(
1
),
014016
(
2012
).
31.
R.
Tadmor
, “
Line energy and the relation between advancing, receding, and young contact angles
,”
Langmuir
20
(
18
),
7659
7664
(
2004
).
32.
N. A.
Quddus
,
W. A.
Moussa
, and
S.
Bhattacharjee
, “
Motion of a spherical particle in a cylindrical channel using arbitrary Lagrangian-Eulerian method
,”
J. Colloid Interface Sci.
317
,
620
630
(
2008
).
33.
B.
Jańczuk
,
T.
Białopiotrowicz
, and
W.
Wójcik
, “
The components of surface tension of liquids and their usefulness in determinations of surface free energy of solids
,”
J. Colloid Interface Sci.
127
(
1
),
59
66
(
1989
).
34.
A.
Terzis
,
E.
Sauer
,
G.
Yang
,
J.
Groß
, and
B.
Weigand
, “
Characterisation of acid-base surface free energy components of urea-water solutions
,”
Colloids Surf., A
538
,
774
780
(
2018
).
35.
D.
Li
and
A.
Neumann
, “
Equation of state for interfacial tensions of solid-liquid systems
,”
Adv. Colloid Interface Sci.
39
,
299
345
(
1992
).
36.
L.
Makkonen
, “
A thermodynamic model of contact angle hysteresis
,”
J. Chem. Phys.
147
(
6
),
064703
(
2017
).
37.
I.
Zarikos
,
A.
Terzis
,
S. M.
Hassanizadeh
 et al, “
Velocity distributions in trapped and mobilized non-wetting phase ganglia in porous media
,”
Sci Rep
8
,
13228
(
2018
).

Supplementary Material

You do not currently have access to this content.