Evaporation-driven liquid flow through nanochannels has attracted extensive attention over recent years due to its applications in mass and heat transfer as well as energy harvesting. A more comprehensive understanding is still expected to reveal the underlying mechanisms and quantitatively elucidate the transport characteristics of this phenomenon. In this study, we investigated evaporation-driven liquid flow through nanochannels using molecular dynamics simulations. The evaporation flux from the solid-liquid interface was higher than that from the middle region of the channel or the liquid-vapor interface. This finding may explain why experimental observations of evaporation flux through nanochannels exceed the limits predicted by the classical Hertz–Knudsen equation. Upon increasing the interaction strength between liquid atoms, the liquid exhibited enhanced solid-liquid interfacial evaporation and higher surface tension, albeit with reduced total flux. We also found that lyophilic channels exhibited higher evaporation fluxes than lyophobic channels, which can be interpreted by a Gibbs free energy analysis. The energy conversion analysis indicated that the effective pressure gradient exerted on a liquid flow by evaporation depends on the channel length. This was consistent with our simulations. Evaporation-driven liquid flow through nanochannels could be modeled quantitatively using this knowledge.

1.
C. J.
Brinker
,
Y.
Lu
,
A.
Sellinger
, and
H.
Fan
, “
Evaporation-induced self-assembly: Nanostructures made easy
,”
Adv. Mater.
11
,
579
(
1999
).
2.
T. H.
Kim
,
J.
Kim
, and
H. Y.
Kim
, “
Evaporation-driven clustering of microscale pillars and lamellae
,”
Phys. Fluids
28
,
022003
(
2016
).
3.
Z.
Zhang
,
X.
Li
,
J.
Yin
,
Y.
Xu
,
W.
Fei
,
M.
Xue
,
Q.
Wang
,
J.
Zhou
, and
W.
Guo
, “
Emerging hydrovoltaic technology
,”
Nat. Nanotechnol.
13
,
1109
(
2018
).
4.
J.
Darabi
,
M. M.
Ohadi
, and
D.
DeVoe
, “
An electrohydrodynamic polarization micropump for electronic cooling
,”
J. Microelectromech. Syst.
10
,
98
(
2001
).
5.
Y.
Liu
,
S.
Yu
,
R.
Feng
,
A.
Bernard
,
Y.
Liu
,
Y.
Zhang
,
H.
Duan
,
W.
Shang
,
P.
Tao
,
C.
Song
, and
T.
Deng
, “
A bioinspired, reusable, paper-based system for high-performance large-scale evaporation
,”
Adv. Mater.
27
,
2768
(
2015
).
6.
J. L.
Monteith
, “
Evaporation and environment
,”
Symp. Soc. Exp. Biol.
19
,
205
(
1965
), available at https://repository.rothamsted.ac.uk/item/8v5v7.
7.
Q.
Zhang
,
H.
Li
,
X.
Liu
,
W.
Zhao
,
C.
Zong
, and
H.
Gai
, “
A self-driven miniaturized liquid fuel cell
,”
Chem. Commun.
52
,
12068
(
2016
).
8.
J.
Li
,
K.
Liu
,
T.
Ding
,
P.
Yang
,
J.
Duan
, and
J.
Zhou
, “
Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator
,”
Nano Energy
58
,
797
(
2019
).
9.
S.
Radhakrishnan
,
T. N. C.
Anand
, and
S.
Bakshi
, “
Evaporation-induced flow around a droplet in different gases
,”
Phys. Fluids
31
,
092109
(
2019
).
10.
R. R.
Nair
,
H. A.
Wu
,
P. N.
Jayaram
,
I. V.
Grigorieva
, and
A. K.
Geim
, “
Unimpeded permeation of water through helium-leak-tight graphene-based membranes
,”
Science
335
,
442
(
2012
).
11.
B.
Radha
,
A.
Esfandiar
,
F. C.
Wang
,
A. P.
Rooney
,
K.
Gopinadhan
,
A.
Keerthi
,
A.
Mishchenko
,
A.
Janardanan
,
P.
Blake
,
L.
Fumagalli
,
M.
Lozada-Hidalgo
,
S.
Garaj
,
S. J.
Haigh
,
I. V.
Grigorieva
,
H. A.
Wu
, and
A. K.
Geim
, “
Molecular transport through capillaries made with atomic-scale precision
,”
Nature
538
,
222
(
2016
).
12.
Y.
Li
,
M. A.
Alibakhshi
,
Y.
Zhao
, and
C.
Duan
, “
Exploring ultimate water capillary evaporation in nanoscale conduits
,”
Nano Lett.
17
,
4813
(
2017
).
13.
Y.
Li
,
H.
Chen
,
S.
Xiao
,
M. A.
Alibakhshi
,
C.-W.
Lo
,
M.-C.
Lu
, and
C.
Duan
, “
Ultrafast diameter-dependent water evaporation from nanopores
,”
ACS Nano
13
,
3363
(
2019
).
14.
S.
Gravelle
,
C.
Ybert
,
L.
Bocquet
, and
L.
Joly
, “
Anomalous capillary filling and wettability reversal in nanochannels
,”
Phys. Rev. E
93
,
033123
(
2016
).
15.
R.
Wan
,
C.
Wang
,
X.
Lei
,
G.
Zhou
, and
H.
Fang
, “
Enhancement of water evaporation on solid surfaces with nanoscale hydrophobic-hydrophilic patterns
,”
Phys. Rev. Lett.
115
,
195901
(
2015
).
16.
S.
Feng
and
Z.
Xu
, “
Edges facilitate water evaporation through nanoporous graphene
,”
Nanotechnology
30
,
165401
(
2019
).
17.
Y.
Nagata
,
K.
Usui
, and
M.
Bonn
, “
Molecular mechanism of water evaporation
,”
Phys. Rev. Lett.
115
,
236102
(
2015
).
18.
J.
Li
,
L.
Shan
,
B.
Ma
,
X.
Jiang
,
A.
Solomon
,
M.
Iyengar
,
J.
Padilla
, and
D.
Agonafer
, “
Investigation of the confinement effect on the evaporation behavior of a droplet pinned on a micropillar structure
,”
J. Colloid Interface Sci.
555
,
583
(
2019
).
19.
A.
Zou
,
S.
Poudel
,
S. P.
Raut
, and
S. C.
Maroo
, “
Pool boiling coupled with nanoscale evaporation using buried nanochannels
,”
Langmuir
35
,
12689
(
2019
).
20.
A.
Rahman
, “
Correlations in the motion of atoms in liquid argon
,”
Phys. Rev.
136
,
A405
(
1964
).
21.
Y.
Akkus
,
A.
Koklu
, and
A.
Beskok
, “
Atomic scale interfacial transport at an extended evaporating meniscus
,”
Langmuir
35
,
4491
(
2019
).
22.
J.
Zhang
,
M. K.
Borg
,
K.
Sefiane
, and
J. M.
Reese
, “
Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation
,”
Phys. Rev. E
92
,
052403
(
2015
).
23.
S.
Gao
,
J.
Long
,
W.
Liu
, and
Z.
Liu
, “
Evaporation-induced wetting transition of nanodroplets on nanopatterned surfaces with concentric rings: Surface geometry and wettability effects
,”
Langmuir
35
,
9546
(
2019
).
24.
J. J.
Yu
,
R.
Tang
,
Y. R.
Li
,
L.
Zhang
, and
C. M.
Wu
, “
Molecular dynamics simulation of heat transport through solid–liquid interface during argon droplet evaporation on heated substrates
,”
Langmuir
35
,
2164
(
2019
).
25.
K.
Yamashita
,
K.
Kashiwagi
,
A.
Agrawal
, and
H.
Daiguji
, “
Grand canonical Monte Carlo and molecular dynamics simulations of capillary condensation and evaporation of water in hydrophilic mesopores
,”
Mol. Phys.
115
,
328
(
2017
).
26.
P.
Katiyar
and
J. K.
Singh
, “
Evaporation induced self-assembly of different shapes and sizes of nanoparticles: A molecular dynamics study
,”
J. Chem. Phys.
150
,
044708
(
2019
).
27.
F. C.
Wang
and
H. A.
Wu
, “
Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces
,”
Soft Matter
9
,
5703
(
2013
).
28.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of surface tension
,”
J. Chem. Phys.
17
,
338
(
1949
).
29.
F.
Goujon
,
P.
Malfreyt
, and
D. J.
Tildesley
, “
The gas-liquid surface tension of argon: A reconciliation between experiment and simulation
,”
J. Chem. Phys.
140
,
244710
(
2014
).
30.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
(
1995
).
31.
W. L.
Winterbottom
and
J. P.
Hirth
, “
Diffusional contribution to the total flow from a Knudsen cell
,”
J. Chem. Phys.
37
,
784
(
1962
).
32.
B. S.
Kong
,
J.
Geng
, and
H. T.
Jung
, “
Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions
,”
Chem. Commun.
16
,
2174
(
2009
).
33.
M.
Knudsen
,
The Kinetic Theory of Gases
(
Methuen & Company Limited
,
London, UK
,
1934
).
34.
R.
Marek
and
J.
Straub
, “
Analysis of the evaporation coefficient and the condensation coefficient of water
,”
Int. J. Heat Mass Transfer
44
,
39
(
2001
).
35.
O.
Björneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L. M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M. M.
Walz
,
J.
Werner
, and
H.
Bluhm
, “
Water at interfaces
,”
Chem. Rev.
116
,
7698
(
2016
).
36.
J. M.
Wallace
and
P. V.
Hobbs
,
Atmospheric Science: An Introductory Survey
, 2nd ed. (
Elsevier Academic Press
,
Amsterdam; Boston
,
2006
).
37.
K.
Sefiane
and
R.
Bennacer
, “
An expression for droplet evaporation incorporating thermal effects
,”
J. Fluid Mech.
667
,
260
(
2011
).
38.
A.
Liakopoulos
,
F.
Sofos
, and
T. E.
Karakasidis
, “
Darcy-Weisbach friction factor at the nanoscale: From atomistic calculations to continuum models
,”
Phys. Fluids
29
,
052003
(
2017
).
39.
H.
Hu
and
R. G.
Larson
, “
Evaporation of a sessile droplet on a substrate
,”
J. Phys. Chem. B
106
,
1334
(
2002
).
40.
K.
Kobayashi
,
A.
Goda
,
K.
Hasegawa
, and
Y.
Abe
, “
Flow structure and evaporation behavior of an acoustically levitated droplet
,”
Phys. Fluids
30
,
082105
(
2018
).
41.
A.
Marchand
,
J. H.
Weijs
,
J. H.
Snoeijer
, and
B.
Andreotti
, “
Why is surface tension a force parallel to the interface?
,”
Am. J. Phys.
79
,
999
(
2011
).
You do not currently have access to this content.