Recent numerical studies have indicated the existence of a new type of vortex unsteadiness around a hemisphere cylinder from low to high angles of attack, characterized by large-scale alternate oscillations of leeward-vortex pairs. This investigation conclusively confirms the existence of vortex oscillations in experiment by directly measuring oscillatory vortex structures and explores their origin and evolution with increasing Reynolds number (Re = 957–6780, Re = UD/ν, where U is freestream velocity, D is the diameter of the body, and ν is the coefficient of kinematic viscosity). The results indicate that the Reynolds number strongly influences the stability of the vortex pairs and oscillations of the vortices. As Re is less than a critical Re (Rec), only weak horizontal oscillations (antisymmetric modes) were observed downstream of the vortex pairs at low frequencies and a small amplitude. At Re > Rec, stronger vortex oscillations were observed with a mean dimensionless frequency of St = 0.11 (St = f D/U), where the amplitude of the oscillations increased with the value of Re. In this case, the oscillations of the vortex pairs consisted of antisymmetric and symmetric modes, where the antisymmetric modes were dominant and corresponded to alternate oscillations of the vortex pairs, and the symmetric modes were much weaker and corresponded to in-phase oscillations of the vortex pairs. The estimated wavelengths imply that the vortex oscillations originated in long-wave instabilities. However, the behaviors of these instabilities were significantly different from those of Crow-type long-wave instabilities in which symmetric modes that are insensitive to the Reynolds number are dominant.

1.
T.
Hsieh
, “
Hemisphere-cylinder in low supersonic flow
,”
AIAA J.
13
(
12
),
1551
1552
(
1975
).
2.
T.
Hsieh
and
K. C.
Wang
, “
Three-dimensional separated flow structure over a cylinder with a hemispherical cap
,”
J. Fluid Mech.
324
,
83
108
(
1996
).
3.
N. T.
Hoang
,
O. K.
Rediniotis
, and
D. P.
Telionis
, “
Symmetric and asymmetric separation patterns over a hemisphere cylinder at low Reynolds numbers and high incidences
,”
J. Fluids Struct.
11
,
793
817
(
1997
).
4.
N. T.
Hoang
,
O. K.
Rediniotis
, and
D. P.
Telionis
, “
Hemisphere cylinder at incidence at intermediate to high Reynolds numbers
,”
AIAA J.
37
,
1240
1250
(
1999
).
5.
S.
Le Clainche
,
D.
Rodríguez
,
V.
Theofilis
, and
J.
Soria
, “
Formation of three-dimensional structures in the hemisphere-cylinder
,”
AIAA J.
54
(
12
),
3884
3894
(
2016
).
6.
B. F.
Ma
,
Y.
Huang
, and
X. Y.
Deng
, “
Dynamic responses of asymmetric vortices over slender bodies to a rotating tip perturbation
,”
Exp. Fluids
57
(
4
),
54
(
2016
).
7.
S.
Mahadevan
,
J.
Rodriguez
, and
R.
Kumar
, “
Effect of controlled imperfections on the vortex asymmetry of a conical body
,”
AIAA J.
56
(
9
),
3460
3477
(
2018
).
8.
B. F.
Ma
,
Z.
Wang
, and
I.
Gursul
, “
Symmetry breaking and instabilities of conical vortex pairs over slender delta wings
,”
J. Fluid Mech.
832
,
41
72
(
2017
).
9.
H.
Luo
and
B. F.
Ma
, “
Time-averaged asymmetries and oscillatory global modes of vortex flows over a slender wing
,”
Phys. Fluids
30
(
9
),
097101-1
097101-
18
(
2018
).
10.
D. K.
Pantelatos
and
D. S.
Mathioulakis
, “
Experimental flow study over a blunt-nosed axisymmetric body at incidence
,”
J. Fluids Struct.
19
,
1103
1115
(
2004
).
11.
F. W.
Roos
, “
Synthetic-jet microblowing for vortex asymmetry management on a hemisphere-cylinder forebody
,” AIAA Paper No. 97–1973,
1997
.
12.
V.
Sirangu
and
T. T.
Ng
, “
Flow control of a slender blunt-nose body at high angles of attack
,”
J. Aircr.
49
,
1904
1912
(
2013
).
13.
F. J.
Jiang
,
J. P.
Gallardo
,
H. I.
Andersson
, and
Z. G.
Zhang
, “
The transitional wake behind an inclined prolate spheroid
,”
Phys. Fluids
27
,
093602-1
093602-
16
(
2014
).
14.
E.
Sanmiguel-Rojas
,
A.
Sevilla
,
C.
Martínez-Bazán
, and
J.-M.
Chomaz
, “
Global mode analysis of axisymmetric bluff-body wakes: Stabilization by base bleed
,”
Phys. Fluids
21
,
114102-1
114102-
13
(
2009
).
15.
P.
Bohorquez
,
E.
Sanmiguel-Rojas
,
A.
Sevilla
,
J. I.
Jiménez-González
, and
C.
Martínez-Bazán
, “
Stability and dynamics of the laminar wake past a slender blunt-based axisymmetric body
,”
J. Fluid Mech.
676
,
110
144
(
2011
).
16.
V.
Gentile
,
F. F. J.
Schrijer
,
B. W.
Van Oudheusden
, and
F.
Scarano
, “
Low-frequency behavior of the turbulent axisymmetric near-wake
,”
Phys. Fluids
28
,
065102
(
2016
).
17.
G.
Paviaa
,
M.
Varney
,
M.
Passmore
, and
M.
Almond
, “
Three dimensional structure of the unsteady wake of an axisymmetric body
,”
Phys. Fluids
31
,
025113
(
2019
).
18.
A.
Gross
,
C.
Jagadeesh
, and
H. F.
Fasel
, “
Numerical and experimental investigation of unsteady three-dimensional separation on axisymmetric bodies
,”
Int. J. Heat Fluid Flow
44
,
53
70
(
2013
).
19.
N. T.
Hoang
,
O. K.
Rediniotis
, and
D. P.
Telionis
, “
The dynamic character of the hemisphere-cylinder wake
,”
Exp. Fluids
26
,
415
422
(
1999
).
20.
S.
Le Clainche
,
J. I.
Li
,
V.
Theofilis
, and
J.
Soria
, “
Flow around a hemisphere-cylinder at high angle of attack and low Reynolds number. Part I: Experimental and numerical investigation
,”
Aerosp. Sci. Technol.
44
,
77
87
(
2014
).
21.
S.
Le Clainche
,
D.
Rodríguez
,
V.
Theofilis
, and
J.
Soria
, “
Flow around a hemisphere-cylinder at high angle of attack and low Reynolds number. Part II: POD and DMD applied to reduced domains
,”
Aerosp. Sci. Technol.
44
,
88
100
(
2014
).
22.
B.-F.
Ma
and
S.-L.
Yin
, “
Vortex oscillations around a hemisphere-cylinder body with a high fineness ratio
,”
AIAA J.
56
(
4
),
1402
1420
(
2018
).
23.
B.-F.
Ma
and
H.-G.
Jiang
, “
Estimation of perspective errors in 2D2C-PIV measurements for 3D concentrated vortices
,”
Exp. Fluids
59
,
101
(
2018
).
24.
J. L.
Lumley
,
Stochastic Tools in Turbulence
,
Applied Mathematics and Mechanics series
(
Academic Press
,
Pittsburgh
,
1970
).
25.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. I. Coherent structures
,”
Q. Appl. Math.
45
,
561
571
(
1987
);
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. II. Symmetries and transformations
,”
Q. Appl. Math.
45
,
573
582
(
1987
);
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. III. Dynamics and scaling
,”
Q. Appl. Math.
45
,
583
590
(
1987
).
26.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
27.
C.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
28.
M. S.
Hemati
,
C. W.
Rowley
,
E. A.
Deem
, and
L. N.
Cattafesta
, “
De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets
,”
Theor. Comput. Fluid Dyn.
31
,
349
368
(
2017
).
29.
M.
Grandemange
,
M.
Gohlke
,
V.
Parezanović
, and
O.
Cadot
, “
On experimental sensitivity analysis of the turbulent wake from an axisymmetric blunt trailing edge
,”
J. Fluid Mech.
24
,
035106-1
035106-
16
(
2012
).
30.
T.
Leweke
,
S.
Le Dizés
, and
C. H. K.
Williamson
, “
Dynamics and instabilities of vortex pairs
,”
Annu. Rev. Fluid Mech.
48
,
507
541
(
2016
).
31.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
(
1990
).
32.
A. J.
Riley
and
M. V.
Lowson
, “
Development of a three-dimensional free shear layer
,”
J. Fluid Mech.
369
,
49
89
(
1998
).
33.
S. C.
Crow
, “
Stability theory for a pair of trailing vortices
,”
AIAA J.
8
,
2172
2179
(
1970
).
34.
C.
Donnadieu
,
S.
Ortiz
,
J.-M.
Chomaz
, and
P.
Billant
, “
Three-dimensional instabilities and transient growth of a counter-rotating vortex pair
,”
Phys. Fluids
21
,
094102-1
094102-
16
(
2009
).
35.
T.
Leweke
and
C. H. K.
Williamson
, “
Experiments on long-wavelength instability and reconnection of a vortex pair
,”
Phys. Fluids
23
,
024101
(
2011
).
36.
J.
Tunkeaw
and
W.
Rojanaratanangkule
, “
Effect of external turbulence on the short-wavelength instability of a counter-rotating vortex pair
,”
Phys. Fluids
30
,
064105
(
2018
).
37.
Z. C.
Zheng
and
J. C.
Hardin
, “
Importance of antisymmetric modes of the crow instability
,”
AIAA J.
55
(
7
),
2123
2128
(
2017
).
38.
D.
Fabre
,
C.
Cossu
, and
L.
Jacquin
, “
Spatial-temporal development of the long and short-wave vortex-pair instabilities
,”
Phys. Fluids
12
(
5
),
1247
1250
(
2000
).
39.
V.
Theofilis
, “
Global linear instability
,”
Annu. Rev. Fluid Mech.
43
,
319
352
(
2011
).
You do not currently have access to this content.