In this paper, the thermodynamic effect is systematically studied by Venturi cavitation in a blow-down type tunnel for the first time, using water at temperatures up to relatively high levels and at controlled dissolved gas contents in the supply reservoir (measured by dissolved oxygen, DO). The mean attached cavity length Lcav is chosen to reveal the thermodynamic effect, and the cavitation characteristics are analyzed from the experiments. With an increase in the thermodynamic parameter Σ*, a decrease in Lcav vs the pressure recovery number κ is observed, which is consistent with suppression of cavitation by the thermodynamic effect, but the decrease is related not only to this effect. Based on the experimental results, a model is presented of the attached cavity cloud that develops from the Venturi throat. It is found that either the length of this cloud oscillates stably around a mean value or the cloud breaks regularly at some upstream position, allowing that a detached cavity cloud is shed, flows downstream, and collapses while the remaining attached cloud regenerates. Applying this model to experimental results obtained first with cold water, then with hot water, we find that when the mean length of the attached cavity cloud oscillates stably, temperature increase causes reduction of the mean cavitation length. This is interpreted to be a consequence of the thermodynamic effect. When detachment of large cavity clouds occurs, the mean length is increased at temperature increase. This is a consequence of cloud configuration changes being superposed on changes due to the thermodynamic effect. These observations explain conflicting results reported for attached cavity clouds in relation to the thermodynamic effect. The gas content in the water is found to be without significance within the range of DO tested.

1.
C. E.
Brennen
,
Hydrodynamics of Pumps
(
Cambridge University Press
,
2011
).
2.
J. P.
Franc
and
J. M.
Michel
,
Fundamentals of Cavitation
(
Springer science & Business media
,
2006
), Vol. 76.
3.
X. W.
Luo
,
B.
Ji
, and
Y.
Tsujimoto
, “
A review of cavitation in hydraulic machinery
,”
J. Hydrodyn.
28
(
3
),
335
358
(
2016
).
4.
G.
Lu
,
Z.
Zuo
,
Y.
Sun
,
D.
Liu
,
Y.
Tsujimoto
, and
S.
Liu
, “
Experimental evidence of cavitation influences on the positive slope on the pump performance curve of a low specific speed model pump-turbine
,”
Renewable Energy
113
,
1539
1550
(
2017
).
5.
P.
Kumar
and
R. P.
Saini
, “
Study of cavitation in hydro turbines—A review
,”
Renewable Sustainable Energy Rev.
14
(
1
),
374
383
(
2010
).
6.
L.
Yu
,
H. C.
Zhang
,
H.
Chen
,
Y. P.
Li
,
Z. G.
Zuo
, and
S. H.
Liu
, “
Geometrical optimization of an inducer with respect to rotating cavitation generated radial forces by using an orthogonal experiment
,”
J. Appl. Fluid Mech.
11
(
6
),
1591
1598
(
2018
).
7.
B.
Ji
,
X.
Luo
,
X.
Peng
,
Y.
Wu
, and
H.
Xu
, “
Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake
,”
Int. J. Multiphase Flow
43
,
13
21
(
2012
).
8.
M.
Callenaere
,
J. P.
Franc
,
J. M.
Michel
, and
M.
Riondet
, “
The cavitation instability induced by the development of a re-entrant jet
,”
J. Fluid Mech.
444
,
223
256
(
2001
).
9.
P.
Tomov
,
S.
Khelladi
,
F.
Ravelet
,
C.
Sarraf
,
F.
Bakir
, and
P.
Vertenoeuil
, “
Experimental study of aerated cavitation in a horizontal Venturi nozzle
,”
Exp. Therm. Fluid Sci.
70
,
85
95
(
2016
).
10.
K.
Croci
,
P.
Tomov
,
F.
Ravelet
,
A.
Danlos
,
S.
Khelladi
, and
J. C.
Robinet
, “
Investigation of two mechanisms governing cloud cavitation shedding: Experimental study and numerical highlight
,” in
ASME 2016 International Mechanical Engineering Congress and Exposition
(
American Society of Mechanical Engineers,
2016
), p.
V007T09A001
.
11.
O.
Coutier-Delgosha
,
J. F.
Devillers
,
T.
Pichon
,
A.
Vabre
,
R.
Woo
, and
S.
Legoupil
, “
Internal structure and dynamics of sheet cavitation
,”
Phys. Fluids
18
(
1
),
017103
(
2006
).
12.
G. M.
Di Cicca
,
M.
Martinez
,
C.
Haigermoser
, and
M.
Onorato
, “
Three-dimensional flow features in a nominally two-dimensional rectangular cavity
,”
Phys. Fluids
25
(
9
),
097101
(
2013
).
13.
M.
Dular
,
I.
Khlifa
,
S.
Fuzier
,
M. A.
Maiga
, and
O.
Coutier-Delgosha
, “
Scale effect on unsteady cloud cavitation
,”
Exp. Fluids
53
(
5
),
1233
1250
(
2012
).
14.
A.
Danlos
,
F.
Ravelet
,
O.
Coutier-Delgosha
, and
F.
Bakir
, “
Cavitation regime detection through proper orthogonal decomposition: Dynamics analysis of the sheet cavity on a grooved convergent–divergent nozzle
,”
Int. J. Heat Fluid Flow
47
,
9
20
(
2014
).
15.
S.
Jahangir
,
W.
Hogendoorn
, and
C.
Poelma
, “
Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle
,”
Int. J. Multiphase Flow
106
,
34
45
(
2018
).
16.
X.
Long
,
J.
Zhang
,
J.
Wang
,
M.
Xu
,
Q.
Lyu
, and
B.
Ji
, “
Experimental investigation of the global cavitation dynamic behavior in a Venturi tube with special emphasis on the cavity length variation
,”
Int. J. Multiphase Flow
89
,
290
298
(
2017
).
17.
J. B.
Leroux
,
O.
Coutier-Delgosha
, and
J. A.
Astolfi
, “
A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil
,”
Phys. Fluids
17
(
5
),
052101
(
2005
).
18.
M.
Kjeldsen
,
R. E.
Arndt
, and
M.
Effertz
, “
Spectral characteristics of sheet/cloud cavitation
,”
J. Fluids Eng.
122
(
3
),
481
487
(
2000
).
19.
B.
Stutz
and
J. L.
Reboud
, “
Experiments on unsteady cavitation
,”
Exp. Fluids
22
(
3
),
191
198
(
1997
).
20.
B.
Stutz
and
J. L.
Reboud
, “
Two-phase flow structure of sheet cavitation
,”
Phys. Fluids
9
(
12
),
3678
3686
(
1997
).
21.
S.
Barre
,
J.
Rolland
,
G.
Boitel
,
E.
Goncalves
, and
R. F.
Patella
, “
Experiments and modeling of cavitating flows in Venturi: Attached sheet cavitation
,”
Eur. J. Mech., B: Fluids
28
(
3
),
444
464
(
2009
).
22.
Q.
Le
,
J. P.
Franc
, and
J. M.
Michel
, “
Partial cavities: Global behavior and mean pressure distribution
,”
J. Fluids Eng.
115
(
2
),
243
248
(
1993
).
23.
H.
Ganesh
, “
Bubbly shock propagation as a cause of sheet to cloud transition of partial cavitation and stationary cavitation bubbles forming on a delta wing vortex
,” Ph.D. thesis,
The University of Michigan
,
2015
.
24.
D. F.
De Lange
, “
Observation and modelling of cloud formation behind a sheet cavity
,” Ph.D. thesis,
University of Twente
,
1996
.
25.
D. F.
De Lange
and
G. J.
De Bruin
, “
Sheet cavitation and cloud cavitation, re-entrant jet and three-dimensionality
,”
Appl. Sci. Res.
58
(
1-4
),
91
114
(
1997
).
26.
Y.
Kawanami
,
H.
Kato
,
H.
Yamaguchi
,
M.
Maeda
, and
S.
Nakasumi
, “
Inner structure of cloud cavity on a foil section
,”
JSME Int. J., Ser. B
45
(
3
),
655
661
(
2002
).
27.
T.
Keil
,
P. F.
Pelz
, and
J.
Buttenbender
, “
On the transition from sheet to cloud cavitation
,” in
CAV2012 Proceedings of the 8th International Symposium on Cavitation
(
Research Publishing Services
,
2012
).
28.
P. F.
Pelz
,
T.
Keil
, and
T. F.
Groß
, “
The transition from sheet to cloud cavitation
,”
J. Fluid Mech.
817
,
439
454
(
2017
).
29.
M.
Adama Maiga
,
O.
Coutier-Delgosha
, and
D.
Buisine
, “
A new cavitation model based on bubble-bubble interactions
,”
Phys. Fluids
30
(
12
),
123301
(
2018
).
30.
M.
Adama Maiga
,
O.
Coutier-Delgosha
, and
D.
Buisine
, “
Analysis of sheet cavitation with bubble/bubble interaction models
,”
Phys. Fluids
31
(
7
),
073302
(
2019
).
31.
B.
Che
,
N.
Chu
,
S. J.
Schmidt
,
L.
Cao
,
D.
Likhachev
, and
D.
Wu
, “
Control effect of micro vortex generators on leading edge of attached cavitation
,”
Phys. Fluids
31
(
4
),
044102
(
2019
).
32.
B.
Che
,
N.
Chu
,
L.
Cao
,
S. J.
Schmidt
,
D.
Likhachev
, and
D.
Wu
, “
Control effect of micro vortex generators on attached cavitation instability
,”
Phys. Fluids
31
(
6
),
064102
(
2019
).
33.
C.
Stanley
,
T.
Barber
, and
G.
Rosengarten
, “
Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice
,”
Int. J. Heat Fluid Flow
50
,
169
176
(
2014
).
34.
M.
Hoekstra
, “
The myth of the re-entrant jet
,” in
Proceedings of WIMRC 3rd International Cavitation Forum
,
Warwick, UK
,
July 2011
.
35.
J. K.
Jakobsen
and
R. B.
Keller
, Jr.
, “
Liquid rocket engine turbopump inducers
,” NASA Report No. SP8052,
1971
.
36.
K.
Kamijo
,
M.
Yoshida
, and
Y.
Tsujimoto
, “
Hydraulic and mechanical performance of LE-7 LOX pump inducer
,”
J. Propul. Power
9
(
6
),
819
826
(
1993
).
37.
B.
Schneider
,
A.
Koşar
, and
Y.
Peles
, “
Hydrodynamic cavitation and boiling in refrigerant (R-123) flow inside microchannels
,”
Int. J. Heat Mass Transfer
50
(
13-14
),
2838
2854
(
2007
).
38.
A. J.
Stepanoff
, “
Cavitation in centrifugal pumps with liquids other than water
,”
J. Eng. Power
83
(
1
),
79
89
(
1961
).
39.
R. D.
Moore
and
R. S.
Ruggeri
, “
Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds
,” NASA Report No. TN D-5292,
1969
.
40.
C.
Brennen
, “
The dynamic behavior and compliance of a stream of cavitating bubbles
,”
J. Fluids Eng.
95
(
4
),
533
541
(
1973
).
41.
J. P.
Franc
,
E.
Janson
,
P.
Morel
,
C.
Rebattet
, and
M.
Riondet
, “
Visualizations of leading edge cavitation in an inducer at different temperatures
,” in
CAV2001 Fourth Int. Symp. Cavitation, Pasadena, CA USA
(
California Institute of Technology
,
2001
), pp.
1
8
, available at http://resolver.caltech.edu/CAV2001:sessionB7.002.
42.
J. P.
Franc
,
C.
Rebattet
, and
A.
Coulon
, “
An experimental investigation of thermal effects in a cavitating inducer
,”
J. Fluids Eng.
126
(
5
),
716
723
(
2004
).
43.
J. P.
Franc
,
G.
Boitel
,
M.
Riondet
,
É.
Janson
,
P.
Ramina
, and
C.
Rebattet
, “
Thermodynamic effect on a cavitating inducer—Part II: On-board measurements of temperature depression within leading edge cavities
,”
J. Fluids Eng.
132
(
2
),
021304
(
2010
).
44.
A.
Cervone
,
C.
Bramanti
,
E.
Rapposelli
, and
L.
d’Agostino
, “
Thermal cavitation experiments on a NACA 0015 hydrofoil
,”
J. Fluids Eng.
128
(
2
),
326
331
(
2006
).
45.
M. G.
De Giorgi
,
A.
Ficarella
, and
M.
Tarantino
, “
Evaluating cavitation regimes in an internal orifice at different temperatures using frequency analysis and visualization
,”
Int. J. Heat Fluid Flow
39
,
160
172
(
2013
).
46.
J. P.
Gustavsson
,
K. C.
Denning
, and
C.
Segal
, “
Hydrofoil cavitation under strong thermodynamic effect
,”
J. Fluids Eng.
130
(
9
),
091303
(
2008
).
47.
S.
Kelly
and
C.
Segal
, “
Characteristics of thermal cavitation on a two-dimensional hydrofoil
,”
J. Propul. Power
29
(
2
),
410
416
(
2013
).
48.
S.
Watanabe
,
K.
Enomoto
,
Y.
Yamamoto
, and
Y.
Hara
, “
Thermal and dissolved gas effects on cavitation in a 2-D convergent-divergent nozzle flow
,” in
ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
(
American Society of Mechanical Engineers
,
2014
), p.
V002T06A013
.
49.
Y.
Ito
,
K.
Sawasaki
,
N.
Tani
,
T.
Nagasaki
, and
T.
Nagashima
, “
A blowdown cryogenic cavitation tunnel and CFD treatment for flow visualization around a foil
,”
J. Therm. Sci.
14
(
4
),
346
351
(
2005
).
50.
M.
Petkovšek
and
M.
Dular
, “
Observing the thermodynamic effects in cavitating flow by IR thermography
,”
Exp. Therm. Fluid Sci.
88
,
450
460
(
2017
).
51.
M.
Petkovšek
and
M.
Dular
, “
IR measurements of the thermodynamic effects in cavitating flow
,”
Int. J. Heat Fluid Flow
44
,
756
763
(
2013
).
52.
Y.
Yamaguchi
and
Y.
Iga
, “
Thermodynamic effect on cavitation in high temperature water
,” in
ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting Collocated With the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels
(
American Society of Mechanical Engineers
,
2014
), p.
V002T06A004
.
53.
K.
Niiyama
,
Y.
Yoshida
,
S.
Hasegawa
,
M.
Watanabe
, and
M.
Oike
, “
Experimental investigation of thermodynamic effect on cavitation in liquid nitrogen
,” in
Proceedings of the Eighth International Symposium on Cavitation (CAV2012)
(
Research Publishing Services
,
2012
), pp.
153
157
.
54.
J.
Zhu
,
H.
Xie
,
K.
Feng
,
X.
Zhang
, and
M.
Si
, “
Unsteady cavitation characteristics of liquid nitrogen flows through Venturi tube
,”
Int. J. Heat Mass Transfer
112
,
544
552
(
2017
).
55.
H.
Zhang
,
Z.
Zuo
, and
S.
Liu
, “
Influence of dissolved gas content on Venturi cavitation at thermally sensitive conditions
,” in
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
(
ASME Press
,
2018
).
56.
Y.
Kodama
,
N.
Take
,
S.
Tamiya
, and
H.
Kato
, “
The effect of nuclei on the inception of bubble and sheet cavitation on axisymmetric bodies
,”
J. Fluids Eng.
103
(
4
),
557
563
(
1981
).
57.
H.
Daido
,
S.
Watanabe
, and
S. I.
Tsuda
, “
Effects of dissolved gas on unsteady cavitating flow around a Clark Y-11.7% hydrofoil
,” in
ASME/JSME/KSME 2015 Joint Fluids Engineering Conference
(
American Society of Mechanical Engineers
,
2015
), p.
V02AT05A006
.
58.
M. G.
Sirotyuk
, “
Effect of the temperature and gas content of the liquid on cavitation processes
,”
Sov. Phys.-Acoust.
12
,
67
71
(
1966
).
59.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2014
).
60.
A. P.
Keller
,
H. K.
Rott
,
B.
Stoffel
, and
R.
Striedinger
, “
Scale effects on cavitation phenomena
,”
Forsch. Ingenieurwes.
65
(
2-3
),
48
57
(
1999
).
61.
M.
Dular
,
B.
Bachert
,
B.
Stoffel
, and
B.
Širok
, “
Relationship between cavitation structures and cavitation damage
,”
Wear
257
(
11
),
1176
1184
(
2004
).
62.
K. A.
Mørch
, “
On the collapse of cavity clusters in flow cavitation
,” in
Cavitation and Inhomogeneities in Underwater Acoustics
(
Springer-Verlag
,
1980
), pp.
95
100
.
63.
K. A.
Mørch
, “
Energy considerations on the collapse of cavity clusters
,”
Appl. Sci. Res.
38
(
1
),
313
321
(
1982
).
64.
S.
Hayashi
and
K.
Sato
, “
Unsteady behavior of cavitating Waterjet in an axisymmetric convergent-divergent nozzle: High speed observation and image analysis based on frame difference method
,”
J. Flow Control, Meas. Visualization
,
2
(
03
),
94
(
2014
).
65.
K.
Sato
,
Y.
Taguchi
, and
S.
Hayashi
, “
High speed observation of periodic cavity behavior in a convergent-divergent nozzle for cavitating water jet
,”
J. Flow Control, Meas. Visualization
1
(
03
),
102
(
2013
).
You do not currently have access to this content.