We present a methodology for simulating three-dimensional flow of incompressible viscoplastic fluids modeled by generalized Newtonian rheological equations. It is implemented in a highly efficient framework for massively parallelizable computations on block-structured grids. In this context, geometric features are handled by the embedded boundary approach, which requires specialized treatment only in cells intersecting or adjacent to the boundary. This constitutes the first published implementation of an embedded boundary algorithm for simulating flow of viscoplastic fluids on structured grids. The underlying algorithm employs a two-stage Runge-Kutta method for temporal discretization, in which viscous terms are treated semi-implicitly and projection methods are utilized to enforce the incompressibility constraint. We augment the embedded boundary algorithm to deal with the variable apparent viscosity of the fluids. Since the viscosity depends strongly on the strain rate tensor, special care has been taken to approximate the components of the velocity gradients robustly near boundary cells, both for viscous wall fluxes in cut cells and for updates of apparent viscosity in cells adjacent to them. After performing convergence analysis and validating the code against standard test cases, we present the first ever fully three-dimensional simulations of creeping flow of Bingham plastics around translating objects. Our results shed new light on the flow fields around these objects.

1.
P.
Saramito
and
A.
Wachs
, “
Progress in numerical simulation of yield stress fluid flows
,”
Rheol. Acta
56
,
211
230
(
2017
).
2.
E.
Mitsoulis
and
J.
Tsamopoulos
, “
Numerical simulations of complex yield-stress fluid flows
,”
Rheol. Acta
56
,
231
258
(
2017
).
3.
A.
Koblitz
,
S.
Lovett
, and
N.
Nikiforakis
, “
Direct numerical simulation of particle sedimentation in a Bingham fluid
,”
Phys. Rev. Fluids
3
,
093302
(
2018
).
4.
N.
Kanaris
,
S.
Kassinos
, and
A.
Alexandrou
, “
On the transition to turbulence of a viscoplastic fluid past a confined cylinder: A numerical study
,”
Int. J. Heat Fluid Flow
55
,
65
75
(
2015
).
5.
E.
Chaparian
,
A.
Wachs
, and
I. A.
Frigaard
, “
Inline motion and hydrodynamic interaction of 2D particles in a viscoplastic fluid
,”
Phys. Fluids
30
,
033101
(
2018
).
6.
A.
Roosing
,
O.
Strickson
, and
N.
Nikiforakis
, “
Fast distance fields for fluid dynamics mesh generation on graphics hardware
,”
Commun. Comput. Phys.
26
,
654
680
(
2019
).
7.
J. W.
Purvis
and
J. E.
Burkhalter
, “
Prediction of critical Mach number for store configurations
,”
AIAA J.
17
,
1170
1177
(
1979
).
8.
B.
Wedan
and
J.
South
, Jr.
, “
A method for solving the transonic full-potential equation for general configurations
,” in
6th Computational Fluid Dynamics Conference Danvers
(
American Institute of Aeronautics and Astronautics
,
1983
), p.
1889
.
9.
D. K.
Clarke
,
H.
Hassan
, and
M.
Salas
, “
Euler calculations for multielement airfoils using Cartesian grids
,”
AIAA J.
24
,
353
358
(
1986
).
10.
M.
Berger
and
R.
Leveque
, “
An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries
,” in
9th Computational Fluid Dynamics Conference
(
American Institute of Aeronautics and Astronautics
,
1989
), p.
1930
.
11.
P.
Colella
,
D. T.
Graves
,
B. J.
Keen
, and
D.
Modiano
, “
A Cartesian grid embedded boundary method for hyperbolic conservation laws
,”
J. Comput. Phys.
211
,
347
366
(
2006
).
12.
H.
Johansen
and
P.
Colella
, “
A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains
,”
J. Comput. Phys.
147
,
60
85
(
1998
).
13.
P.
McCorquodale
,
P.
Colella
, and
H.
Johansen
, “
A Cartesian grid embedded boundary method for the heat equation on irregular domains
,”
J. Comput. Phys.
173
,
620
635
(
2001
).
14.
M.
Berger
, “
Cut cells: Meshes and solvers
,” in
Handbook of Numerical Analysis
(
Elsevier
,
2017
), Vol. 18, pp.
1
22
.
15.
N.
Gokhale
,
N.
Nikiforakis
, and
R.
Klein
, “
A dimensionally split Cartesian cut cell method for hyperbolic conservation laws
,”
J. Comput. Phys.
364
,
186
208
(
2018
).
16.
N.
Gokhale
,
N.
Nikiforakis
, and
R.
Klein
, “
A dimensionally split Cartesian cut cell method for the compressible Navier–Stokes equations
,”
J. Comput. Phys.
375
,
1205
1219
(
2018
).
17.
K.
Sverdrup
,
N.
Nikiforakis
, and
A.
Almgren
, “
Highly parallelisable simulations of time-dependent viscoplastic fluid flow with structured adaptive mesh refinement
,”
Phys. Fluids
30
,
093102
(
2018
).
18.
A.
Wachs
, “
Computational methods for viscoplastic fluid flows
,” in
Lectures on Visco-Plastic Fluid Mechanics
(
Springer
,
2019
), pp.
83
125
.
19.
L.
Muravleva
, “
Axisymmetric squeeze flow of a viscoplastic Bingham medium
,”
J. Non-Newtonian Fluid Mech.
249
,
97
120
(
2017
).
20.
L.
Muravleva
, “
Squeeze flow of Bingham plastic with stick-slip at the wall
,”
Phys. Fluids
30
,
030709
(
2018
).
21.
H. A.
Barnes
,
J. F.
Hutton
, and
K.
Walters
,
An Introduction to Rheology
(
Elsevier
,
1989
), Vol. 3.
22.
J.
Mewis
, “
Thixotropy—A general review
,”
J. Non-Newtonian Fluid Mech.
6
,
1
20
(
1979
).
23.
H. A.
Barnes
, “
Thixotropy—A review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
24.
T. C.
Papanastasiou
, “
Flows of materials with yield
,”
J. Rheol.
31
,
385
404
(
1987
).
25.
I.
Frigaard
and
C.
Nouar
, “
On the usage of viscosity regularisation methods for visco-plastic fluid flow computation
,”
J. Non-Newtonian Fluid Mech.
127
,
1
26
(
2005
).
26.
M.
Dinkgreve
,
M. M.
Denn
, and
D.
Bonn
, “
‘Everything flows?’: Elastic effects on startup flows of yield-stress fluids
,”
Rheol. Acta
56
,
189
194
(
2017
).
27.
N. J.
Balmforth
,
I. A.
Frigaard
, and
G.
Ovarlez
, “
Yielding to stress: Recent developments in viscoplastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
46
,
121
146
(
2014
).
28.
P.
de Souza Mendes
and
E. S.
Dutra
, “
Viscosity function for yield-stress liquids
,”
Appl. Rheol.
14
,
296
302
(
2004
).
29.
A.
De Waele
, “
Die änderung der viskosität mit der scheergeschwindigkeit disperser systeme
,”
Colloid Polym. Sci.
36
,
332
333
(
1925
).
30.
E. C.
Bingham
, “
An investigation of the laws of plastic flow
,”
Bull. Bur. Stand.
13
,
309
353
(
1916
).
31.
J.
Oldroyd
, “
A rational formulation of the equations of plastic flow for a Bingham solid
,” in
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1947
), Vol. 43, pp.
100
105
.
32.
W. H.
Herschel
and
R.
Bulkley
, “
Konsistenzmessungen von gummi-benzollösungen
,”
Colloid Polym. Sci.
39
,
291
300
(
1926
).
33.
A.
Almgren
,
J.
Bell
,
P.
Colella
,
L.
Howell
, and
M.
Welcome
, “
A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations
,”
J. Comput. Phys.
142
,
1
46
(
1998
).
34.
R.
Pember
,
L.
Howell
,
J.
Bell
,
P.
Colella
,
W.
Crutchfield
,
W.
Fiveland
, and
J.
Jessee
, “
An adaptive projection method for unsteady, low-Mach number combustion
,”
Combust. Sci. Technol.
140
,
123
168
(
1998
).
35.
M.
Day
and
J.
Bell
, “
Numerical simulation of laminar reacting flows with complex chemistry
,”
Combust. Theory Modell.
4
,
535
556
(
2000
).
36.
W.
Zhang
,
A.
Almgren
,
V.
Beckner
,
J.
Bell
,
J.
Blaschke
,
C.
Chan
,
M.
Day
,
B.
Friesen
,
K.
Gott
,
D.
Graves
,
M. P.
Katz
,
A.
Myers
,
T.
Nguyen
,
A.
Nonaka
,
M.
Rosso
,
S.
Williams
, and
M.
Zingale
, “
AMReX: A framework for block-structured adaptive mesh refinement
,”
J. Open Source Software
4
,
1370
(
2019
).
37.
A.
Almgren
,
V.
Beckner
,
J.
Bell
,
M.
Day
,
L.
Howell
,
C.
Joggerst
,
M.
Lijewski
,
A.
Nonaka
,
M.
Singer
, and
M.
Zingale
, “
CASTRO: A new compressible astrophysical solver. I. Hydrodynamics and self-gravity
,”
Astrophys. J.
715
,
1221
(
2010
).
38.
A. S.
Almgren
,
J. B.
Bell
,
M. J.
Lijewski
,
Z.
Lukić
, and
E.
Van Andel
, “
Nyx: A massively parallel AMR code for computational cosmology
,”
Astrophys. J.
765
,
39
(
2013
).
39.
A.
Dubey
,
A.
Almgren
,
J.
Bell
,
M.
Berzins
,
S.
Brandt
,
G.
Bryan
,
P.
Colella
,
D.
Graves
,
M.
Lijewski
,
F.
Löffler
,
B.
O’Shea
,
E.
Schnetter
,
B.
Van Straalen
, and
K.
Weide
, “
A survey of high level frameworks in block-structured adaptive mesh refinement packages
,”
J. Parallel Distrib. Comput.
74
,
3217
3227
(
2014
).
40.
S.
Habib
,
A.
Pope
,
H.
Finkel
,
N.
Frontiere
,
K.
Heitmann
,
D.
Daniel
,
P.
Fasel
,
V.
Morozov
,
G.
Zagaris
,
T.
Peterka
,
V.
Vishwanath
,
Z.
Lukić
,
S.
Sehrish
, and
W.-k.
Liao
, “
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
,”
New Astron.
42
,
49
65
(
2016
).
41.
P.
Wesseling
and
C. W.
Oosterlee
, “
Geometric multigrid with applications to computational fluid dynamics
,”
J. Comput. Appl. Math.
128
,
311
334
(
2001
).
42.
H. A.
Van der Vorst
, “
A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
,”
SIAM J. Sci. Stat. Comput.
13
,
631
644
(
1992
).
43.
See https://github.com/AMReX-Codes/incflo for the code repository.
44.
M.
Kang
,
R. P.
Fedkiw
, and
X.-D.
Liu
, “
A boundary condition capturing method for multiphase incompressible flow
,”
J. Sci. Comput.
15
,
323
360
(
2000
).
45.
A.
Syrakos
,
G. C.
Georgiou
, and
A. N.
Alexandrou
, “
Cessation of the lid-driven cavity flow of Newtonian and Bingham fluids
,”
Rheol. Acta
55
,
51
66
(
2016
).
46.
P.
Colella
, “
A direct Eulerian MUSCL scheme for gas dynamics
,”
SIAM J. Sci. Stat. Comput.
6
,
104
117
(
1985
).
47.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
2189
(
1965
).
48.
A. S.
Almgren
,
J. B.
Bell
, and
W. Y.
Crutchfield
, “
Approximate projection methods: Part I. Inviscid analysis
,”
SIAM J. Sci. Comput.
22
,
1139
1159
(
2000
).
49.
D.
Graves
,
P.
Colella
,
D.
Modiano
,
J.
Johnson
,
B.
Sjogreen
, and
X.
Gao
, “
A Cartesian grid embedded boundary method for the compressible Navier–Stokes equations
,”
Commun. Appl. Math. Comput. Sci.
8
,
99
122
(
2013
).
50.
R. J.
LeVeque
, “
High resolution finite volume methods on arbitrary grids via wave propagation
,”
J. Comput. Phys.
78
,
36
63
(
1988
).
51.
R. J.
LeVeque
, “
Cartesian grid methods for flow in irregular regions
,”
Numer. Methods Fluid Dyn.
3
,
375
382
(
1988
).
52.
M. A.
Olshanskii
, “
Analysis of semi-staggered finite-difference method with application to Bingham flows
,”
Comput. Methods Appl. Mech. Eng.
198
,
975
985
(
2009
).
53.
K. D.
Housiadas
, “
Improved convergence based on linear and non-linear transformations at low and high Weissenberg asymptotic analysis
,”
J. Non-Newtonian Fluid Mech.
247
,
1
14
(
2017
).
54.
R. W.
Ansley
and
T. N.
Smith
, “
Motion of spherical particles in a Bingham plastic
,”
AIChE J.
13
,
1193
1196
(
1967
).
55.
A.
Beris
,
J.
Tsamopoulos
,
R.
Armstrong
, and
R.
Brown
, “
Creeping motion of a sphere through a Bingham plastic
,”
J. Fluid Mech.
158
,
219
244
(
1985
).
56.
J.
Blackery
and
E.
Mitsoulis
, “
Creeping motion of a sphere in tubes filled with a Bingham plastic material
,”
J. Non-Newtonian Fluid Mech.
70
,
59
77
(
1997
).
57.
B. T.
Liu
,
S. J.
Muller
, and
M. M.
Denn
, “
Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere
,”
J. Non-Newtonian Fluid Mech.
102
,
179
191
(
2002
).
58.
D. L.
Tokpavi
,
A.
Magnin
, and
P.
Jay
, “
Very slow flow of Bingham viscoplastic fluid around a circular cylinder
,”
J. Non-Newtonian Fluid Mech.
154
,
65
76
(
2008
).
59.
E.
Chaparian
and
I. A.
Frigaard
, “
Yield limit analysis of particle motion in a yield-stress fluid
,”
J. Fluid Mech.
819
,
311
351
(
2017
).
60.
A. R.
Koblitz
,
S.
Lovett
, and
N.
Nikiforakis
, “
Viscoplastic squeeze flow between two identical infinite circular cylinders
,”
Phys. Rev. Fluids
3
,
023301
(
2018
).
61.
Prashant
and
J.
Derksen
, “
Direct simulations of spherical particle motion in Bingham liquids
,”
Comput. Chem. Eng.
35
,
1200
1214
(
2011
).
62.
S.-G.
Chen
,
C.-H.
Zhang
,
Y.-T.
Feng
,
Q.-C.
Sun
, and
F.
Jin
, “
Three-dimensional simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
,”
Eng. Appl. Comput. Fluid Mech.
10
,
346
358
(
2016
).
63.
K.
Adachi
and
N.
Yoshioka
, “
On creeping flow of a visco-plastic fluid past a circular cylinder
,”
Chem. Eng. Sci.
28
,
215
226
(
1973
).
64.
M. F.
Randolph
and
G.
Houlsby
, “
The limiting pressure on a circular pile loaded laterally in cohesive soil
,”
Geotechnique
34
,
613
623
(
1984
).
65.
E.
Mitsoulis
, “
On creeping drag flow of a viscoplastic fluid past a circular cylinder: Wall effects
,”
Chem. Eng. Sci.
59
,
789
800
(
2004
).
66.
B. T.
Liu
,
S. J.
Muller
, and
M. M.
Denn
, “
Interactions of two rigid spheres translating collinearly in creeping flow in a Bingham material
,”
J. Non-Newtonian Fluid Mech.
113
,
49
67
(
2003
).
67.
T.
Treskatis
,
M. A.
Moyers-Gonzalez
, and
C. J.
Price
, “
An accelerated dual proximal gradient method for applications in viscoplasticity
,”
J. Non-Newtonian Fluid Mech.
238
,
115
130
(
2016
).
68.
P.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
2015
).
69.
S.
De
,
J.
Kuipers
,
E.
Peters
, and
J.
Padding
, “
Viscoelastic flow simulations in model porous media
,”
Phys. Rev. Fluids
2
,
053303
(
2017
).
70.
J.
Oldroyd
, “
Two-dimensional plastic flow of a Bingham solid: A plastic boundary-layer theory for slow motion
,” in
Mathematical Proceedings of the Cambridge Philosophical Society
(
Cambridge University Press
,
1947
), Vol. 43, pp.
383
395
.
71.
N. J.
Balmforth
, “
Viscoplastic asymptotics and other analytical methods
,” in
Lectures on Visco-Plastic Fluid Mechanics
(
Springer
,
2019
), pp.
41
82
.
72.
G. G.
Stokes
, “
On the effect of the internal friction of fluids on the motion of pendulums
,”
Trans. Cambridge Philos. Soc.
9
,
8
(
1851
).
73.
H.
Faxén
, “
Forces exerted on a rigid cylinder in a viscous fluid between two parallel fixed planes
,”
Ingenioersvetenskapsakad., Handl.
187
,
1
13
(
1946
).
You do not currently have access to this content.