Stick-slip flow is a challenging viscoelastic benchmark problem due to the presence of a separation or transition point at the die exit where a sudden change in flow boundary conditions occurs. We present numerical simulations of transient planar stick-slip flow of the Phan-Thien–Tanner (PTT) and Giesekus fluids, investigating the polymer stress behavior around the stress singularity at the stick-slip point, confirming the asymptotic results presented by Evans et al. [“Stresses of the Oldroyd-B, PTT and Giesekus fluids in a Newtonian velocity field near the stick-slip singularity,” Phys. Fluids 29, 1–33 (2017)]. In order to improve the numerical knowledge about this viscoelastic benchmark problem, two distinct mathematical methodologies are used for comparison in the computational simulations: the Cartesian and natural stress formulations. The former is widely applied in computational rheology, while the latter is used for the first time in the context of this problem. The natural stress formulation gives improved convergence results both temporally and spatially near to the singularity while maintaining the same global flow characteristics as the Cartesian.

1.
J. R. A.
Pearson
,
Mechanics of Polymer Processing–Application to Polymer Processing (Videorecording)
(
Center for Advanced Engineering Study
,
M.I.T., Cambridge, MA
,
1974
).
2.
R. I.
Tanner
,
Engineering Rheology
, The Oxford Engineering Science Series (
Clarendon Press
,
1985
).
3.
S.
Richardson
, “
A ‘stick-slip’ problem related to the motion of a free jet at low Reynolds numbers
,”
Math. Proc. Cambridge Philos. Soc.
67
,
477
489
(
1970
).
4.
S.
Richardson
, “
The die swell phenomenon
,”
Rheol. Acta
9
(
2
),
193
199
(
1970
).
5.
S. A.
Trogdon
and
D. D.
Joseph
, “
The stick-slip problem for a round jet
,”
Rheol. Acta
19
(
4
),
404
420
(
1980
).
6.
R. I.
Tanner
and
X.
Huang
, “
Stress singularities in non-Newtonian stick-slip and edge flows
,”
J. Non-Newtonian Fluid Mech.
50
(
2
),
135
160
(
1993
).
7.
T. R.
Salamon
,
D. E.
Bornside
,
R. C.
Armstrong
, and
R. A.
Brown
, “
The role of surface tension in the dominant balance in the die swell singularity
,”
Phys. Fluids
7
(
10
),
2328
2344
(
1995
).
8.
C. J. S.
Petrie
and
M. M.
Denn
, “
Instabilities in polymer processing
,”
AIChE J.
22
(
2
),
209
236
(
1976
).
9.
M. M.
Denn
, “
Issues in viscoelastic fluid mechanics
,”
Annu. Rev. Fluid Mech.
22
(
1
),
13
32
(
1990
).
10.
M. M.
Denn
, “
Extrusion instabilities and wall slip
,”
Annu. Rev. Fluid Mech.
33
(
1
),
265
287
(
2001
).
11.
R. G.
Larson
, “
Instabilities in viscoelastic flows
,”
Rheol. Acta
31
(
3
),
213
263
(
1992
).
12.
M. D.
Graham
, “
The sharkskin instability of polymer melt flows
,”
Chaos
9
(
1
),
154
163
(
1999
).
13.
Y.
Kwon
, “
Numerical modelling of two-dimensional melt fracture instability in viscoelastic flow
,”
J. Fluid Mech.
855
,
595
615
(
2018
).
14.
O.
Hassager
, “
Working group on numerical techniques
,” in
Proceedings of the Vth Workshop on Numerical Methods in Non-Newtonian Flow
[
J. Non-Newtonian Fluid Mech.
29
,
2
5
(
1988
)].
15.
M.
Renardy
,
Mathematical Analysis of Viscoelastic Flows
(
Society for Industrial and Applied Mathematics, SIAM
,
Philadelphia
,
2000
).
16.
N.
Phan-Thien
and
R. I.
Tanner
, “
A new constitutive equation derived from network theory
,”
J. Non-Newtonian Fluid Mech.
2
(
4
),
353
365
(
1977
).
17.
N.
Phan-Thien
, “
A nonlinear network viscoelastic model
,”
J. Rheol.
22
(
3
),
259
283
(
1978
).
18.
H.
Giesekus
, “
A unified approach to a variety of constitutive models for polymer fluids based on the concept of configuration-dependent molecular mobility
,”
Rheol. Acta
21
(
4
),
366
375
(
1982
).
19.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, Fluid Mechanics Vol. 1 (
Wiley
,
New York
,
1987
).
20.
L. L.
Ferrás
,
A. M.
Afonso
,
J. M.
Nóbrega
, and
F. T.
Pinho
, “
A numerical and theoretical study on viscoelastic fluid slip flows
,”
Phys. Fluids
29
(
5
),
053102
(
2017
).
21.
L.
Campo-Deaño
,
R. P. A.
Dullens
,
D. G. A. L.
Aarts
,
F. T.
Pinho
, and
M. S. N.
Oliveira
, “
Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system
,”
Biomicrofluidics
7
(
3
),
034102
(
2013
).
22.
A.
Ramiar
,
M. M.
Larimi
, and
A. A.
Ranjbar
, “
Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery
,”
Acta Bioeng. Biomech.
19
(
3
),
27
41
(
2017
).
23.
N. A.
Talib
and
Ö.
Ertunç
, “
Application of Giesekus model for capillary extrusion of rubber compound
,”
J. Chem. Eng. Jpn.
52
(
2
),
185
193
(
2019
).
24.
D.
Tang
,
F. H.
Marchesini
,
D. R.
D’hooge
, and
L.
Cardon
, “
Isothermal flow of neat polypropylene through a slit die and its die swell: Bridging experiments and 3D numerical simulations
,”
J. Non-Newtonian Fluid Mech.
266
,
33
45
(
2019
).
25.
Z.
Khan
,
R. A.
Shah
,
S.
Islam
,
B.
Jan
,
M.
Imran
, and
F.
Tahir
, “
Steady flow and heat transfer analysis of Phan-Thein-Tanner fluid in double-layer optical fiber coating analysis with slip conditions
,”
Sci. Rep.
6
,
34593
(
2016
).
26.
A.
Syrakos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Theoretical study of the flow in a fluid damper containing high viscosity silicone oil: Effects of shear-thinning and viscoelasticity
,”
Phys. Fluids
30
(
3
),
030708
(
2018
).
27.
L. L.
Ferrás
,
A. M.
Afonso
,
M. A.
Alves
,
J. M.
Nóbrega
, and
F. T.
Pinho
, “
Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions
,”
Phys. Fluids
28
(
9
),
093102
(
2016
).
28.
H. S.
Gaikwad
,
P.
Baghel
,
R.
Sarma
, and
P. K.
Mondal
, “
Transport of neutral solutes in a viscoelastic solvent through a porous microchannel
,”
Phys. Fluids
31
(
2
),
022006
(
2019
).
29.
J.
Evans
,
I. L.
Palhares Junior
, and
C. M.
Oishi
, “
Stresses of the Oldroyd-B, PTT and Giesekus fluids in a Newtonian velocity field near the stick-slip singularity
,”
Phys. Fluids
29
,
121604
(
2017
).
30.
J.
Evans
, “
Stick-slip and slip-stick singularities of the Phan-Thien–Tanner fluid
,”
J. Non-Newtonian Fluid Mech.
199
,
12
19
(
2013
).
31.
J.
Evans
, “
Stick-slip singularity of the Giesekus fluid
,”
J. Non-Newtonian Fluid Mech.
222
,
24
33
(
2015
).
32.
M.
Renardy
, “
How to integrate the upper convected Maxwell (UCM) stresses near a singularity (and maybe elsewhere, too)
,”
J. Non-Newtonian Fluid Mech.
52
(
1
),
91
95
(
1994
).
33.
J. D.
Evans
and
C. M.
Oishi
, “
Transient computations using the natural stress formulation for solving sharp corner flows
,”
J. Non-Newtonian Fluid Mech.
249
,
48
52
(
2017
).
34.
J. D.
Evans
,
H. L.
Franca
, and
C. M.
Oishi
, “
Application of the natural stress formulation for solving unsteady viscoelastic contraction flows
,”
J. Comput. Phys.
388
(
1
),
462
489
(
2019
).
35.
A.
Fortin
,
A.
Zine
, and
J.-F.
Agassant
, “
Computing viscoelastic fluid flow problems at low cost
,”
J. Non-Newtonian Fluid Mech.
45
(
2
),
209
229
(
1992
).
36.
F. P. T.
Baaijens
, “
Application of low-order discontinuous Galerkin methods to the analysis of viscoelastic flows
,”
J. Non-Newtonian Fluid Mech.
52
,
37
57
(
1994
).
37.
S.-C.
Xue
,
R. I.
Tanner
, and
N.
Phan-Thien
, “
Three-dimensional numerical simulations of viscoelastic flows–predictability and accuracy
,”
Comput. Methods Appl. Mech. Eng.
180
,
305
331
(
1999
).
38.
G.
Karapetsas
and
J.
Tsamopoulos
, “
On the stick-slip flow from slit and cylindrical dies of a Phan-Thien and Tanner fluid model. I. Steady state
,”
Phys. Fluids
21
(
12
),
123101
(
2009
).
39.
M.
Renardy
, “
The high Weissenberg number limit of the UCM model and the Euler equations
,”
J. Non-Newtonian Fluid Mech.
69
(
2
),
293
301
(
1997
).
40.
P.
Wapperom
and
M.
Renardy
, “
Numerical prediction of the boundary layers in the flow around a cylinder using a fixed velocity field
,”
J. Non-Newtonian Fluid Mech.
125
(
1
),
35
48
(
2005
).
41.
M. I.
Gerritsma
and
T. N.
Phillips
, “
On the characteristics and compatibility equations for the UCM model fluid
,”
Z. Angew. Math. Mech.
88
(
7
),
523
539
(
2008
).
42.
M. I.
Gerritsma
and
T. N.
Phillips
, “
On the use of characteristic variables in viscoelastic flow problems
,”
IMA J. Appl. Math.
66
(
2
),
127
147
(
2001
).
43.
C. M.
Oishi
,
F. P.
Martins
,
M. F.
Tome
,
J. A.
Cuminato
, and
S.
Mckee
, “
Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows
,”
J. Non-Newtonian Fluid Mech.
166
(
3
),
165
179
(
2011
).
44.
A. J.
Chorin
and
J. E.
Marsden
,
A Mathematical Introduction to Fluid Mechanics
(
Springer
,
1990
), Vol. 3.
45.
D. L.
Brown
,
R.
Cortez
, and
M. L.
Minion
, “
Accurate projection methods for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
168
(
2
),
464
499
(
2001
).
46.
F. S.
Sousa
,
C. M.
Oishi
, and
G. C.
Buscaglia
, “
Spurious transients of projection methods in microflow simulations
,”
Comput. Methods Appl. Mech. Eng.
285
,
659
693
(
2015
).
47.
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
,
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
(
Cambridge University Press
,
2011
).
48.
M. A.
Alves
,
F. T.
Pinho
, and
P. J.
Oliveira
, “
Benchmark solutions for the flow of Oldroyd-B and PTT fluids in planar contractions
,”
J. Non-Newtonian Fluid Mech.
110
,
45
75
(
2003
).
49.
Y.-C.
Ahn
and
M. E.
Ryan
, “
A finite difference analysis of the extrudate swell problem
,”
Int. J. Numer. Methods Fluids
13
(
10
),
1289
1310
(
1991
).
50.
H. K.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
(
1
),
1
18
(
1964
).
51.
M.
Elliotis
,
G.
Georgiou
, and
C.
Xenophontos
, “
Solution of the planar Newtonian stick–slip problem with the singular function boundary integral method
,”
Int. J. Numer. Methods Fluids
48
(
9
),
1001
1021
(
2005
).
You do not currently have access to this content.