Liquid foams represent a key component to a vast range of food industry products, from ice creams to the crema on coffee. Longevity of these foams is a highly desirable attribute; however, in order for foam stability to be effectively controlled, a better understanding of the interdependence of the bulk liquid and air-liquid interfacial rheologies is required. This study follows an increasing trend in experimental investigations made of isolated foam structures at the microscale, where the bulk and surface dynamics of a single foam liquid channel can be accurately assessed. Isolated foam channels with adjoining nodes were studied for aqueous solutions of four food grade surfactants. Existing observations of distortions to sodium dodecyl sulphate channel geometries were confirmed for solutions of Tween 20 (T20) and Tween 80 (T80) and were well described by the theory presented here. Moreover, previously unseen distortions to liquid channels were observed for polymeric surfactant systems (hydroxypropyl methylcellulose and hydrolyzed pea protein blend), which were proposed to result from their high surface viscosities. The apparent surface viscosities, μs, of surfactants tested here ranged from high (10 g/s < μs < 10−3 g/s) for polymeric surfactants to very low (10−10 g/s < μs < 10−8 g/s) for Tweens, clearly demarking the regimes of viscous and inertial dominant flows, respectively. It is recommended that further work seeks to investigate the finding of a strong correlation between μs and channel surface tension, γ, for soluble surfactant systems, which could explain the apparent non-Newtonian values of μs that were consistently measured here.

1.
J.
Wang
,
A. V.
Nguyen
, and
S.
Farrokhpay
, “
A critical review of the growth, drainage and collapse of foams
,”
Adv. Colloid Interface Sci.
228
,
55
70
(
2016
).
2.
A. J.
Green
,
K. A.
Littlejohn
,
P.
Hooley
, and
P. W.
Cox
, “
Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients
,”
Curr. Opin. Colloid Interface Sci.
18
,
292
301
(
2013
).
3.
R. J.
Pugh
,
Bubble and Foam Chemistry
(
Cambridge University Press
,
Cambridge, United Kingdom
,
2016
).
4.
A. L.
Ellis
,
A. B.
Norton
,
T. B.
Mills
, and
I. T.
Norton
, “
Stabilisation of foams by agar gel particles
,”
Food Hydrocolloids
73
,
222
228
(
2017
).
5.
C.
Li
,
M.
Li
,
Z.
Shi
, and
X.
Ye
, “
Effect of soluble surfactants on vertical liquid film drainage
,”
Phys. Fluids
31
,
032105
(
2019
).
6.
C.
Clarke
,
A.
Lazidis
,
F.
Spyropoulos
, and
I. T.
Norton
, “
Measuring the impact of channel length on liquid flow through an ideal plateau border and node system
,”
Soft Matter
15
,
1879
1889
(
2019
).
7.
F.
Elias
,
E.
Janiaud
,
J.-C.
Bacri
, and
B.
Andreotti
, “
Elasticity of a soap film junction
,”
Phys. Fluids
26
,
037101
(
2014
).
8.
P. M.
Kruglyakov
,
S. I.
Karakashev
,
A. V.
Nguyen
, and
N. G.
Vilkova
, “
Foam drainage
,”
Curr. Opin. Colloid Interface Sci.
13
,
163
170
(
2008
).
9.
S.
Naire
,
R. J.
Braun
, and
S. A.
Snow
, “
An insoluble surfactant model for a vertical draining free film with variable surface viscosity
,”
Phys. Fluids
13
,
2492
2502
(
2001
).
10.
F.
Rouyer
,
O.
Pitois
,
E.
Lorenceau
, and
N.
Louvet
, “
Permeability of a bubble assembly: From the very dry to the wet limit
,”
Phys. Fluids
22
,
043302
(
2010
).
11.
Q.
Sun
,
L.
Tan
, and
G.
Wang
, “
Liquid foam drainage: An overview
,”
Int. J. Mod. Phys. B
22
,
2333
2354
(
2008
).
12.
S. S.
Thete
,
C.
Anthony
,
P.
Doshi
,
M. T.
Harris
, and
O. A.
Basaran
, “
Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids
,”
Phys. Fluids
28
,
092101
(
2016
).
13.
A.
Anazadehsayed
,
N.
Rezaee
, and
J.
Naser
, “
Numerical modelling of flow through foam’s node
,”
J. Colloid Interface Sci.
504
,
485
491
(
2017
).
14.
I.
Cantat
,
S.
Cohen-Addad
,
F.
Elias
,
F.
Graner
,
R.
Höhler
,
O.
Pitois
,
F.
Rouyer
,
A.
Saint-Jalmes
, and
S.
Cox
,
Foams: Structure and Dynamics
(
Oxford University Press
,
New York
,
2013
).
15.
A.
Anazadehsayed
,
N.
Rezaee
,
J.
Naser
, and
A. V.
Nguyen
, “
A review of aqueous foam in microscale
,”
Adv. Colloid Interface Sci.
256
,
203
229
(
2018
).
16.
D.
Weaire
,
S.
Hutzler
,
G.
Verbist
,
E.
Peters
,
I.
Prigogine
, and
S. A.
Rice
, “
A review of foam drainage
,”
Adv. Chem. Phys.
102
,
315
374
(
1997
).
17.
K.
Koczó
and
G.
Rácz
, “
Flow in a plateau border
,”
Colloids Surf.
22
,
95
96
(
1987
).
18.
M.
Kostoglou
,
E.
Georgiou
, and
T. D.
Karapantsios
, “
A new device for assessing film stability in foams: Experiment and theory
,”
Colloids Surf., A
382
,
64
73
(
2011
).
19.
O.
Pitois
,
C.
Fritz
, and
M.
Vignes-Adler
, “
Liquid drainage through aqueous foam: Study of the flow on the bubble scale
,”
J. Colloid Interface Sci.
282
,
458
465
(
2005
).
20.
O.
Pitois
,
C.
Fritz
, and
M.
Vignes-Adler
, “
Hydrodynamic resistance of a single foam channel
,”
Colloids Surf., A
261
,
109
114
(
2005
).
21.
O.
Pitois
,
N.
Louvet
,
E.
Lorenceau
, and
F.
Rouyer
, “
Node contribution to the permeability of liquid foams
,”
J. Colloid Interface Sci.
322
,
675
677
(
2008
).
22.
Z. A.
Zell
,
A.
Nowbahar
,
V.
Mansard
,
L. G.
Leal
,
S. S.
Deshmukh
,
J. M.
Mecca
,
C. J.
Tucker
, and
T. M.
Squires
, “
Surface shear inviscidity of soluble surfactants
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
3677
3682
(
2014
).
23.
D.
Weaire
and
S.
Hutzler
,
The Physics of Foams
(
Oxford University Press
,
New York
,
1999
).
24.
A.
Saint-Jalmes
,
Y.
Zhang
, and
D.
Langevin
, “
Quantitative description of foam drainage: Transitions with surface mobility
,”
Eur. Phys. J. E
15
,
53
60
(
2004
).
25.
A.
Saint-Jalmes
, “
Physical chemistry in foam drainage and coarsening
,”
Soft Matter
2
,
836
849
(
2006
).
26.
A. V.
Nguyen
, “
Liquid drainage in single plateau borders of foam
,”
J. Colloid Interface Sci.
249
,
194
199
(
2002
).
27.
Dow Chemical Company
,
Methocel Cellulose Ethers Technical Handbook
(
The Dow Chemical Company
,
USA
,
2002
), p.
29
; http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_096d/0901b8038096d9ff.pdf?filepath=methocel/pdfs/noreg/192-01062.pdf&fromPage=GetDoc; accessed
24 July 2019
.
28.
M. C.
Tulbek
,
R. S. H.
Lam
,
Y.
Wang
,
P.
Asavajaru
, and
A.
Lam
, “
Pea: A sustainable vegetable protein crop
,” in
Sustainable Protein Sources
, edited by
S. R.
Nadathur
,
J. P. D.
Wanasundara
, and
L.
Scanlin
(
Academic Press
,
San Diego
,
2017
), Chap. 9, pp.
145
164
.
29.
K. L.
Mittal
, “
Determination of CMC of polysorbate 20 in aqueous solution by surface tension method
,”
J. Pharm. Sci.
61
,
1334
1335
(
1972
).
30.
A.
Patist
,
S. S.
Bhagwat
,
K. W.
Penfield
,
P.
Aikens
, and
D. O.
Shah
, “
On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants
,”
J. Surfactants Deterg.
3
,
53
58
(
2000
).
31.
See https://wiki.anton-paar.com/en/water/2008 for Anton-paar viscosity of water; accessed 18 April
2019
.
32.
K.
Kinoshita
,
E.
Parra
, and
D.
Needham
, “
Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method: Measurement of the diffusion coefficient and renormalization of the mean ionic activity for SDS
,”
J. Colloid Interface Sci.
504
,
765
779
(
2017
).
33.
J. C.
Earnshaw
, “
Surface viscosity of water
,”
Nature
292
,
138
139
(
1981
).

Supplementary Material

You do not currently have access to this content.