Patients with end-stage renal disease are usually treated by hemodialysis while waiting for a kidney transplant. A common device for vascular access is an arteriovenous graft (AVG). However, AVG failure induced by thrombosis has been plaguing dialysis practice for decades. Current studies indicate that the thrombosis is caused by intimal hyperplasia, which is triggered by the abnormal flows and forces [e.g., wall shear stress (WSS)] in the vein after AVG implant. Due to the high level of complexity, in almost all of the existing works of modeling and simulation of the blood-flow vessel-AVG system, the graft and blood vessel are assumed to be rigid and immobile. Very recently, we have found that the compliance of graft and vein can reduce flow disturbances and lower WSS [Z. Bai and L. Zhu, “Three-dimensional simulation of a viscous flow past a compliant model of arteriovenous-graft anastomosis,” Comput. Fluids 181, 403–415 (2019)]. In this paper, we apply the compliant model to investigate possible effects of several dimensionless parameters (AVG graft-vein diameter ratio Rgv, AVG attaching angle θ, flow Reynolds numbers Re, and native vein speed Vv) on the flow and force fields near the distal AVG anastomosis at low Reynolds numbers (up to several hundreds). Our computational results indicate that the influences of the parameters Rgv, θ, and Re lie largely on the graft and the influence of Vv lies largely on the vein. In any case, the WSS, wall shear stress gradient, and wall normal stress gradient and their averaged values on the graft are significantly greater than those on the vein.

1.
S. J.
Schwab
, “
Vascular access for hemodialysis
,”
Kidney Int.
55
(
5
),
2078
2090
(
1999
).
2.
E. C.
Kovalik
and
S. J.
Schwab
, “
Can venous stenosis be prevented?
,” in
Seminars in Dialysis
(
Wiley Online Library
,
1999
), Vol. 12, pp.
144
145
.
3.
A.
Brahmbhatt
,
A.
Remuzzi
,
M.
Franzoni
, and
S.
Misra
, “
The molecular mechanisms of hemodialysis vascular access failure
,”
Kidney Int.
89
(
2
),
303
316
(
2016
).
4.
P.
Budu-Grajdeanu
,
R. C.
Schugart
,
A.
Friedman
,
C.
Valentine
,
A. K.
Agarwal
, and
B. H.
Rovin
, “
A mathematical model of venous neointimal hyperplasia formation
,”
Theor. Biol. Med. Modell.
5
(
1
),
2
(
2008
).
5.
P. E.
Miller
,
D.
Carlton
,
M. H.
Deierhoi
,
D. T.
Redden
, and
M.
Allon
, “
Natural history of arteriovenous grafts in hemodialysis patients
,”
Am. J. Kidney Dis.
36
(
1
),
68
74
(
2000
).
6.
M.
Lemson
,
J.
Tordoir
,
M.
Daemen
, and
P.
Kitslaar
, “
Intimal hyperplasia in vascular grafts
,”
Eur. J. Vasc. Endovascular Surg.
19
(
4
),
336
350
(
2000
).
7.
H.
Haruguchi
and
S.
Teraoka
, “
Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: A review
,”
J. Artif. Organs
6
(
4
),
227
235
(
2003
).
8.
C. V.
Cunnane
,
E. M.
Cunnane
, and
M. T.
Walsh
, “
A review of the hemodynamic factors believed to contribute to vascular access dysfunction
,”
Cardiovasc. Eng. Technol.
8
(
3
),
280
294
(
2017
).
9.
R. S.
Reneman
,
T.
Arts
, and
A. P.
Hoeks
, “
Wall shear stress–an important determinant of endothelial cell function and structure–in the arterial system in vivo
,”
J. Vasc. Res.
43
(
3
),
251
269
(
2006
).
10.
O.
Traub
and
B. C.
Berk
, “
Laminar shear stress: Mechanisms by which endothelial cells transduce an atheroprotective force
,”
Arterioscler., Thromb., Vasc. Biol.
18
(
5
),
677
685
(
1998
).
11.
P. F.
Davies
,
A.
Remuzzi
,
E. J.
Gordon
,
C. F.
Dewey
, and
M. A.
Gimbrone
, “
Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro
,”
Proc. Natl. Acad. Sci. U. S. A.
83
(
7
),
2114
2117
(
1986
).
12.
P.
Dobrin
,
F.
Littooy
, and
E.
Endean
, “
Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts
,”
Surgery
105
(
3
),
393
400
(
1989
).
13.
M.
Ojha
,
C. R.
Ethier
,
K. W.
Johnston
, and
R. S.
Cobbold
, “
Steady and pulsatile flow fields in an end-to-side arterial anastomosis model
,”
J. Vasc. Surg.
12
(
6
),
747
753
(
1990
).
14.
L. W.
Kraiss
,
T. R.
Kirkman
,
T. R.
Kohler
,
B.
Zierler
, and
A. W.
Clowes
, “
Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts
,”
Arterioscler., Thromb., Vasc. Biol.
11
(
6
),
1844
1852
(
1991
).
15.
M. E.
Cinat
,
J.
Hopkins
, and
S. E.
Wilson
, “
A prospective evaluation of ptfe graft patency and surveillance techniques in hemodialysis access
,”
Ann. Vasc. Surg.
13
(
2
),
191
198
(
1999
).
16.
A.
Mima
, “
Hemodialysis vascular access dysfunction: Molecular mechanisms and treatment
,”
Ther. Apheresis Dial.
16
(
4
),
321
327
(
2012
).
17.
A. W.
Clowes
,
M. A.
Reidy
, and
M. M.
Clowes
, “
Mechanisms of stenosis after arterial injury
,”
Lab. Invest. J. Tech. Methods Pathol.
49
(
2
),
208
215
(
1983
).
18.
M. F.
Fillinger
,
E. R.
Reinitz
,
R. A.
Schwartz
,
D. E.
Resetarits
,
A. M.
Paskanik
,
D.
Bruch
, and
C. E.
Bredenberg
, “
Graft geometry and venous intimal-medial hyperplasia in arteriovenous loop grafts
,”
J. Vasc. Surg.
11
(
4
),
556
566
(
1990
).
19.
P. J.
Brands
,
A. P.
Hoeks
,
L.
Hofstra
, and
R. S.
Reneman
, “
A noninvasive method to estimate wall shear rate using ultrasound
,”
Ultrasound Med. Biol.
21
(
2
),
171
185
(
1995
).
20.
M. J.
Thubrikar
,
Vascular Mechanics and Pathology
(
Springer Science & Business Media
,
2007
).
21.
S.
Unnikrishnan
,
T. N.
Huynh
,
B.
Brott
,
Y.
Ito
,
C.
Cheng
,
A.
Shih
,
M.
Allon
, and
A. S.
Anayiotos
, “
Turbulent flow evaluation of the venous needle during hemodialysis
,”
J. Biomech. Eng.
127
(
7
),
1141
1146
(
2005
).
22.
T. N.
Huynh
,
B. K.
Chacko
,
X.
Teng
,
B. C.
Brott
,
M.
Allon
,
S. S.
Kelpke
,
J. A.
Thompson
,
R. P.
Patel
, and
A. S.
Anayiotos
, “
Effects of venous needle turbulence during ex vivo hemodialysis on endothelial morphology and nitric oxide formation
,”
J. Biomech.
40
(
10
),
2158
2166
(
2007
).
23.
O. Kh.
Jahrome
,
I.
Hoefer
,
G. J.
Houston
,
P. A.
Stonebridge
,
P. J.
Blankestijn
,
F. L.
Moll
, and
G. J.
De Borst
, “
Hemodynamic effects of spiral ePTFE prosthesis compared with standard arteriovenous graft in a carotid to jugular vein porcine model
,”
J. Vascular Access
12
(
3
),
224
230
(
2011
).
24.
M. R.
De Vries
and
P. H.
Quax
, “
Inflammation in vein graft disease
,”
Front. Cardiovasc. Med.
5
,
3
(
2018
).
25.
D.
Fulker
,
B.
Ene-Iordache
, and
T.
Barber
, “
High-resolution computational fluid dynamic simulation of haemodialysis cannulation in a patient-specific arteriovenous fistula
,”
J. Biomech. Eng.
140
(
3
),
031011
(
2018
).
26.
L.
Grechy
,
F.
Iori
,
R.
Corbett
,
S.
Shurey
,
W.
Gedroyc
,
N.
Duncan
,
C.
Caro
, and
P.
Vincent
, “
Suppressing unsteady flow in arterio-venous fistulae
,”
Phys. Fluids
29
(
10
),
101901
(
2017
).
27.
P.
Longest
and
C.
Kleinstreuer
, “
Computational haemodynamics analysis and comparison study of arterio-venous grafts
,”
J. Med. Eng. Technol.
24
(
3
),
102
110
(
2000
).
28.
F.
Loth
,
P. F.
Fischer
,
N.
Arslan
,
C. D.
Bertram
,
S. E.
Lee
,
T. J.
Royston
,
W. E.
Shaalan
, and
H. S.
Bassiouny
, “
Transitional flow at the venous anastomosis of an arteriovenous graft: Potential activation of the ERK1/2 mechanotransduction pathway
,”
J. Biomech. Eng.
125
(
1
),
49
61
(
2003
).
29.
J.
Chen
,
X.-Y.
Lu
, and
W.
Wang
, “
Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses
,”
J. Biomech.
39
(
11
),
1983
1995
(
2006
).
30.
S.-W.
Lee
,
D. S.
Smith
,
F.
Loth
,
P. F.
Fischer
, and
H. S.
Bassiouny
, “
Importance of flow division on transition to turbulence within an arteriovenous graft
,”
J. Biomech.
40
(
5
),
981
992
(
2007
).
31.
J. M.
Ortega
,
W.
Small
,
T. S.
Wilson
,
W. J.
Benett
,
J. M.
Loge
, and
D. J.
Maitland
, “
A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts
,”
IEEE Trans. Biomed. Eng.
54
(
9
),
1722
1724
(
2007
).
32.
T. A.
Manos
,
D. P.
Sokolis
,
A. T.
Giagini
,
C. H.
Davos
,
J. D.
Kakisis
,
E. P.
Kritharis
,
N.
Stergiopulos
,
P. E.
Karayannacos
, and
S.
Tsangaris
, “
Local hemodynamics and intimal hyperplasia at the venous side of a porcine arteriovenous shunt
,”
IEEE Trans. Inf. Technol. Biomed.
14
(
3
),
681
690
(
2010
).
33.
H.-H.
Kim
,
Y. H.
Choi
,
S.-H.
Suh
,
J. S.
Lee
,
Y. H.
Jung
, and
Y. H.
So
, “
Arteriovenous graft modeling and hemodynamic interpretation
,”
Open J. Fluid Dyn.
2
(
04
),
324
(
2012
).
34.
S.
Khruasingkeaw
,
Y.
Khunatorn
,
K.
Rerkasem
, and
T.
Srisuwan
, “
Wall shear stress distribution in arteriovenous graft anastomosis using computational fluid dynamics
,”
Int. J. Pharm. Med. Biol. Sci.
5
(
1
),
71
(
2016
).
35.
D.
Williams
, “
Computational fluid dynamics analysis of arteriovenous graft configurations
,” Engineering and Applied Science Thesis and Dissertation,
Washington University
,
St. Louis
,
2018
, No. 340.
36.
A.
McNally
,
A. G.
Akingba
,
E. A.
Robinson
, and
P.
Sucosky
, “
Novel modular anastomotic valve device for hemodialysis vascular access: Preliminary computational hemodynamic assessment
,”
J. Vasc. Access
15
(
6
),
448
460
(
2014
).
37.
A.
McNally
,
A. G.
Akingba
, and
P.
Sucosky
, “
Effect of arteriovenous graft flow rate on vascular access hemodynamics in a novel modular anastomotic valve device
,”
J. Vasc. Access
19
(
5
),
446
454
(
2018
).
38.
B.
Ene-Iordache
and
A.
Remuzzi
, “
Blood flow in idealized vascular access for hemodialysis: A review of computational studies
,”
Cardiovasc. Eng. Technol.
8
(
3
),
295
312
(
2017
).
39.
S.
Vogel
,
Life in Moving Fluids: The Physical Biology of Flow
(
Princeton University Press
,
1996
).
40.
A.
Voorhees
,
G. B.
Nackman
, and
T.
Wei
, “
Experiments show importance of flow-induced pressure on endothelial cell shape and alignment
,”
Proc. R. Soc. A
463
,
1409
1419
(
2007
).
41.
S.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
), p.
771
.
42.
I.
Decorato
,
Z.
Kharboutly
,
C.
Legallais
, and
A.-V.
Salsac
, “
Numerical study of the influence of wall compliance on the haemodynamics in a patient-specific arteriovenous fistula
,”
Comput. Methods Biomech. Biomed. Eng.
14
(
sup1
),
121
123
(
2011
).
43.
P. M.
McGah
,
D. F.
Leotta
,
K. W.
Beach
, and
A.
Aliseda
, “
Effects of wall distensibility in hemodynamic simulations of an arteriovenous fistula
,”
Biomech. Model. Mechanobiol.
13
(
3
),
679
695
(
2014
).
44.
Z.
Bai
and
L.
Zhu
, “
Three-dimensional simulation of a viscous flow past a compliant model of arteriovenous-graft anastomosis
,”
Comput. Fluids
181
,
403
415
(
2019
).
45.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
46.
W.
Quanyu
,
L.
Xiaojie
,
P.
Lingjiao
,
T.
Weige
, and
Q.
Chunqi
, “
Simulation analysis of blood flow in arteries of the human arm
,”
Biomed. Eng.: Appl., Basis Commun.
29
(
04
),
1750031
(
2017
).
47.
M. W.
Roos
,
E.
Wadbro
, and
M.
Berggren
, “
Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts
,”
Comput. Biol. Med.
43
(
2
),
164
168
(
2013
).
48.
M.
Bukač
,
S.
Čanić
,
J.
Tambača
, and
Y.
Wang
, “
Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study
,”
Comput. Methods Appl. Mech. Eng.
350
,
679
(
2019
).
49.
Y.
Wu
and
X.-C.
Cai
, “
A parallel two-level method for simulating blood flows in branching arteries with the resistive boundary condition
,”
Comput. Fluids
45
(
1
),
92
102
(
2011
).
50.
P. F.
Fischer
,
F.
Loth
,
S. E.
Lee
,
S.-W.
Lee
,
D. S.
Smith
, and
H. S.
Bassiouny
, “
Simulation of high-Reynolds number vascular flows
,”
Comput. Methods Appl. Mech. Eng.
196
(
31-32
),
3049
3060
(
2007
).
51.
Z.
Guo
and
C.
Shu
,
Lattice Boltzmann Method and its Applications in Engineering
(
World Scientific
,
2013
), Vol. 3.
52.
S.
Succi
,
The Lattice Boltzmann Equation: For Complex States of Flowing Matter
(
Oxford University Press
,
2018
).
53.
W.
Strychalski
,
C. A.
Copos
,
O. L.
Lewis
, and
R. D.
Guy
, “
A poroelastic immersed boundary method with applications to cell biology
,”
J. Comput. Phys.
282
,
77
97
(
2015
).
54.
Y. H.
Qian
,
Lattice Gas and Lattice Kinetic Theory Applied to the Navier-Stokes Equations
(
Doktorarbeit, Universite Pierre et Marie Curie
,
Paris
,
1990
).
55.
S.
Chen
and
G. D.
Doolen
, “
Lattice Boltzmann method for fluid flows
,”
Annu. Rev. Fluid Mech.
30
,
329
(
1998
).
56.
L.-S.
Luo
, “
Unified theory of lattice Boltzmann models for nonideal gases
,”
Phys. Rev. Lett.
81
(
8
),
1618
(
1998
).
57.
D. A.
Wolf-Gladrow
,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction
(
Springer
,
2000
), No. 1725.
58.
H.
Huang
,
M.
Sukop
, and
X.
Lu
,
Multiphase Lattice Boltzmann Methods: Theory and Application
(
John Wiley & Sons
,
2015
).
59.
T.
Krüger
,
H.
Kusumaatmaja
,
A.
Kuzmin
,
O.
Shardt
,
G.
Silva
, and
E. M.
Viggen
,
The Lattice Boltzmann Method
(
Springer International Publishing
,
2017
), Vol. 10, pp.
978
983
.
60.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
, “
Discrete lattice effects on the forcing term in the lattice Boltzmann method
,”
Phys. Rev. E
65
(
4
),
046308
(
2002
).
61.
L.
Zhu
,
G.
He
,
S.
Wang
,
L.
Miller
,
X.
Zhang
,
Q.
You
, and
S.
Fang
, “
An immersed boundary method based on the lattice Boltzmann approach in three dimensions, with application
,”
Comput. Math. Appl.
61
(
12
),
3506
3518
(
2011
).
62.
L.
Zhu
,
X.
Yu
,
N.
Liu
,
Y.
Cheng
, and
X.
Lu
, “
A deformable plate interacting with a non-Newtonian fluid in three dimensions
,”
Phys. Fluids
29
(
8
),
083101
(
2017
).
63.
L.
Zhu
, “
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
,”
Theor. Appl. Mech. Lett.
8
(
3
),
193
196
(
2018
).
64.
B.
Zigon
,
L.
Zhu
, and
F.
Song
, “
Interactive 3D simulation for fluid–structure interactions using dual coupled GPUs
,”
J. Supercomput.
74
(
1
),
37
64
(
2018
).
65.
Z.
Bai
, “
Modeling and simulation of blood flow past the distal anastomosis of arteriovenous graft for hemodialysis
,” Ph.D. dissertation (
Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis
,
2018
).
66.
S.
Misra
,
A. A.
Fu
,
A.
Puggioni
,
K. M.
Karimi
,
J. N.
Mandrekar
,
J. F.
Glockner
,
L. A.
Juncos
,
B.
Anwer
,
A. M.
McGuire
, and
D.
Mukhopadhyay
, “
Increased shear stress with upregulation of VEGF-A and its receptors and MMP-2, MMP-9, and TIMP-1 in venous stenosis of hemodialysis grafts
,”
Am. J. Physiol.-Heart Circ. Physiol.
294
(
5
),
H2219
H2230
(
2008
).
67.
T. G.
Papaioannou
and
C.
Stefanadis
, “
Vascular wall shear stress: Basic principles and methods
,”
Hellenic J. Cardiol.
46
(
1
),
9
15
(
2005
).
68.
M. J.
Oliver
,
S.
Schwab
, and
A.
Sheridan
, Chronic Hemodialysis Vascular Access: Types and Placement, UpToDate Version 13.
You do not currently have access to this content.