This work summarizes the current state of knowledge in the area of meltblown technology for production of polymeric nonwovens with specific attention to utilized polymers, die design, production of nanofibers, the effect of process variables (such as the throughput rate, melt rheology, melt temperature, die temperature, air temperature/velocity/pressure, die-to-collector distance, and speed) with relation to nonwoven characteristics as well as to typical flow instabilities such as whipping, die drool, fiber breakup, melt spraying, flies, generation of small isolated spherical particles, shots, jam, and generation of nonuniform fiber diameters.

1.
K. C.
Dutton
, “
Overview and analysis of the meltblown process and parameters
,”
J. Text. Apparel, Technol. Manage.
6
(
1
),
1
25
(
2009
).
2.
J. G.
McCulloch
, “
The history of the development of melt blowing technology
,”
Int. Nonwovens J.
8
(
1
),
139
149
(
1999
).
3.
R. L.
Shambaugh
, “
A macroscopic view of the melt-blowing process for producing microfibers
,”
Ind. Eng. Chem. Res.
27
(
12
),
2363
2372
(
1988
).
4.
R.
Gahan
and
G. C.
Zguris
, “
A review of the melt blown process
,” in
Proceedings of the Annual Battery Conference on Applications and Advances
(
Institute of Electrical and Electronics Engineers Inc.
,
2000
), Vol. 2000, pp.
145
149
.
5.
R.
Zhao
, “
Melt blown dies: A hot innovation spot
,”
Int. Nonwovens J.
11
(
4
),
37
41
(
2002
).
6.
See https://www.scopus.com/home.uri for Scopus services, SciVerse: Open to accelerate science, 17 June
2019
.
7.
X.
Wang
and
Q.
Ke
, “
Experimental investigation of adhesive meltblown web production using accessory air
,”
Polym. Eng. Sci.
46
(
1
),
1
7
(
2006
).
8.
R.
Nayak
, “
Fabrication and characterization of polypropylene nanofibers by melt electrospinning and meltblowing
,” Ph.D. thesis,
RMIT University
,
Australia
,
2012
.
9.
N.
Deng
,
H.
He
,
J.
Yan
,
Y.
Zhao
,
E.
Ben Ticha
,
Y.
Liu
,
W.
Kang
, and
B.
Cheng
, “
One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration
,”
Polymer
165
,
174
179
(
2019
).
10.
Y.
Pu
,
J.
Zheng
,
F.
Chen
,
Y.
Long
,
H.
Wu
,
Q.
Li
,
S.
Yu
,
X.
Wang
, and
X.
Ning
, “
Preparation of polypropylene micro and nanofibers by electrostatic-assisted melt blown and their application
,”
Polymers
10
,
959
(
2018
).
11.
W.
Han
,
S.
Xie
,
J.
Shi
, and
X.
Wang
, “
Study on airflow field and fiber motion with new melt blowing die
,”
Polym. Eng. Sci.
59
,
1182
1189
(
2019
).
12.
I. M.
Hutten
, “
Processes for nonwoven filter media
,” in
Handbook of Nonwoven Filter Media
, 2nd ed. (
Butterworth-Heinemann
,
Kidlington, UK
,
2015
), pp.
276
342
, ISBN: 978-0-08-098301-1.
13.
T.
Karthik
,
C.
Prabha Karan
, and
R.
Rathinamoorthy
,
Non-Woven: Process, Structure, Properties and Applications
(
Woodhead Publishing India in Textiles, CRC Press
,
2016
), p.
358
, ISBN: 978-9385059124.
14.
R. R.
Bresee
and
W.
Ko
, “
Fiber formation during melt blowing
,”
Int. Nonwovens J.
12
(
2
),
21
28
(
2003
).
15.
A.
De Rovere
,
R. L.
Shambaugh
, and
E. A.
O’Rear
, “
Investigation of gravity-spun, melt-spun, and melt-blown polypropylene fibers using atomic force microscopy
,”
J. Appl. Polym. Sci.
77
(
9
),
1921
1937
(
2000
).
16.
J.
Drabek
and
M.
Zatloukal
, “
Influence of long chain branching on fiber diameter distribution for polypropylene nonwovens produced by melt blown process
,”
J. Rheol.
63
(
4
),
519
532
(
2019
).
17.
S.
Xin
and
X.
Wang
, “
Shear flow of molten polymer in melt blowing
,”
Polym. Eng. Sci.
52
(
6
),
1325
1331
(
2012
).
18.
C. J.
Ellison
,
A.
Phatak
,
D. W.
Giles
,
C. W.
Macosko
, and
F. S.
Bates
, “
Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup
,”
Polymer
48
(
11
),
3306
3316
(
2007
).
19.
R. S.
Rao
and
R. L.
Shambaugh
, “
Vibration and stability in the melt blowing process
,”
Ind. Eng. Chem. Res.
32
(
12
),
3100
3111
(
1993
).
20.
T.
Chen
,
C.
Zhang
,
X.
Chen
, and
Q.
Li
, “
Numerical computation of the fiber diameter of melt blown nonwovens produced by the inset die
,”
J. Appl. Polym. Sci.
111
(
4
),
1775
1779
(
2009
).
21.
S.
Xie
and
Y. C.
Zeng
, “
A geometry method for calculating the fiber diameter reduction in melt blowing
,”
Adv. Mater. Res.
893
,
87
90
(
2014
).
22.
S.
Xie
,
Y.
Zheng
, and
Y.
Zeng
, “
Influence of die geometry on fiber motion and fiber attenuation in the melt-blowing process
,”
Ind. Eng. Chem. Res.
53
(
32
),
12866
12871
(
2014
).
23.
D. H.
Tan
,
C.
Zhou
,
C. J.
Ellison
,
S.
Kumar
,
C. W.
Macosko
, and
F. S.
Bates
, “
Meltblown fibers: Influence of viscosity and elasticity on diameter distribution
,”
J. Non-Newtonian Fluid Mech.
165
(
15-16
),
892
900
(
2010
).
24.
S.
Xie
,
W.
Han
,
G.
Jiang
, and
C.
Chen
, “
Turbulent air flow field in slot-die melt blowing for manufacturing microfibrous nonwoven materials
,”
J. Mater. Sci.
53
(
9
),
6991
7003
(
2018
).
25.
B. R.
Shambaugh
,
D. V.
Papavassiliou
, and
R. L.
Shambaugh
, “
Modifying air fields to improve melt blowing
,”
Ind. Eng. Chem. Res.
51
(
8
),
3472
3482
(
2012
).
26.
L.
Jarecki
,
A.
Ziabicki
,
Z.
Lewandowski
, and
A.
Blim
, “
Dynamics of air drawing in the melt blowing of nonwovens from isotactic polypropylene by computer modeling
,”
J. Appl. Polym. Sci.
119
(
1
),
53
65
(
2011
).
27.
G. F.
Ward
, “
Meltblown nanofibers for nonwoven filtration applications
,”
Filtr. Sep.
38
(
9
),
42
43
(
2001
).
28.
See https://patents.google.com/ for Google Patents, viewed on 17 June
2019
.
29.
D.
Lohkamp
and
J.
Keller
, “
Melt-blowing die using capillary tubes
,” US Patent US-3825379-A (23 July
1974
).
30.
J.
Harding
,
J.
Keller
, and
R.
Butin
, “
Melt-blowing die for producing nonwoven mats
,” US Patent US-3825380-A (23 July
1974
).
31.
C.
Eckhard
and
A.
Schwarz
, “
Apparatus and process for melt-blowing a fiber forming thermoplastic polymer and product produced thereby
,” US Patent US-4380570-A (19 April
1983
).
32.
D. W.
Appel
,
A. D.
Drost
, and
J. C.
Lau
, “
Slotted melt-blown die head
,” US Patent US-4720252-A (19 January
1988
).
33.
P. G.
Buehning
, “
Melt blowing die
,” US Patent US-4986743-A (22 January
1991
).
34.
M. A.
Allen
and
J. T.
Fetcko
, “
Modular meltblowing die
,” US Patent US-5618566-A (8 April
1997
).
35.
M. W.
Milligan
, “
Multihole meltblown die nosepiece
,” US Patent US-6099282-A (8 August
2000
).
36.
B. D.
Haynes
and
M. C. H.
Cook
, “
Die for producing meltblown multicomponent fibers and meltblown nonwoven fabrics
,” US Patent US-7150616-B2 (19 December
2006
).
37.
J.
Brang
,
A.
Wilkie
, and
J.
Haggard
, “
Method and apparatus for production of meltblown nanofibers
,” US Patent US-2008023888-A1 (31 January
2008
).
38.
M. A.
Allen
, “
Melt blowing die, apparatus and method
,” US Patent US-2017067184-A1 (9 March
2017
).
39.
H.
Adachi
and
Y.
Miura
, “
Melt-blowing die
,” JP Patent JP-2017203233-A (16 November
2017
).
40.
T.
Chen
and
X.
Huang
, “
Modeling polymer air drawing in the melt blowing nonwoven process
,”
Text. Res. J.
73
(
7
),
651
654
(
2003
).
41.
T.
Chen
and
X.
Huang
, “
Air drawing of polymers in the melt blowing nonwoven process: Mathematical modeling
,”
Model. Simul. Mater. Sci. Eng.
12
(
3
),
381
388
(
2004
).
42.
T.
Chen
,
X.
Wang
, and
X.
Huang
, “
Modeling the air-jet flow field of a dual slot die in the melt blowing nonwoven process
,”
Text. Res. J.
74
(
11
),
1018
1024
(
2004
).
43.
T.
Chen
,
L.
Li
, and
X.
Huang
, “
Fiber diameter of polybutylene terephthalate melt-blown nonwovens
,”
J. Appl. Polym. Sci.
97
,
1750
1752
(
2005
).
44.
T.
Chen
,
X.
Wang
, and
X.
Huang
, “
Effects of processing parameters on the fiber diameter of melt blown nonwoven fabrics
,”
Text. Res. J.
75
(
1
),
76
80
(
2005
).
45.
L. L.
Wu
,
D. H.
Huang
, and
T.
Chen
, “
Modeling the nanofiber fabrication with the melt blowing annular die
,”
Matéria
19
(
4
),
377
381
(
2014
).
46.
J. C.
Kayser
and
R. L.
Shambaugh
, “
The manufacture of continuous polymeric filaments by the melt-blowing process
,”
Polym. Eng. Sci.
30
(
19
),
1237
1251
(
1990
).
47.
M. A. J.
Uyttendaele
and
R. L.
Shambaugh
, “
Melt blowing: General equation development and experimental verification
,”
Am. Inst. Chem. Eng. J.
36
(
2
),
175
186
(
1990
).
48.
M. K.
Tyagi
and
R. L.
Shambaugh
, “
Use of oscillating gas jets in fiber processing
,”
Ind. Eng. Chem. Res.
34
,
656
660
(
1995
).
49.
V. T.
Marla
and
R. L.
Shambaugh
, “
Three-dimensional model of the melt-blowing process
,”
Ind. Eng. Chem. Res.
42
(
26
),
6993
7005
(
2003
).
50.
V. T.
Marla
and
R. L.
Shambaugh
, “
Modeling of the melt blowing performance of slot die
,”
Ind. Eng. Chem. Res.
43
(
11
),
2789
2797
(
2004
).
51.
E. M.
Moore
,
D. V.
Papavassiliou
, and
R. L.
Shambaugh
, “
Air velocity, air temperature, fiber vibration and fiber diameter measurements on a practical melt blowing die
,”
Int. Nonwovens J.
13
(
3
),
43
53
(
2004
).
52.
B. R.
Shambaugh
,
D. V.
Papavassiliou
, and
R. L.
Shambaugh
, “
Next-generation modeling of melt blowing
,”
Ind. Eng. Chem. Res.
50
,
12233
12245
(
2011
).
53.
L. C.
Wadsworth
and
A. M.
Jones
, “
Novel melt blown research findings
,” in
The International Nonwovens Technical Conference
,
Philadelphia, USA
,
1986
, code 11191.
54.
K. J.
Choi
,
J. E.
Spruiell
,
J. F.
Fellers
, and
L. C.
Wadsworth
, “
Strength properties of melt blown nonwoven webs
,”
Polym. Eng. Sci.
28
(
2
),
81
89
(
1988
).
55.
Y.
Lee
and
L. C.
Wadsworth
, “
Structure and filtration properties of melt blown polypropylene webs
,”
Polym. Eng. Sci.
30
(
22
),
1413
1419
(
1990
).
56.
M. W.
Milligan
,
F.
Lu
,
R. R.
Buntin
, and
L. C.
Wadsworth
, “
The use of crossflow to improve nonwoven melt-blown fibers
,”
J. Appl. Polym. Sci.
44
,
279
288
(
1992
).
57.
Q.
Sun
,
D.
Zhang
,
B.
Chen
, and
L. C.
Wadsworth
, “
Application of neural network to meltblown process control
,”
J. Appl. Polym. Sci.
62
,
1605
1611
(
1996
).
58.
V. A.
Wente
,
E. L.
Boone
, and
C. D.
Fluharty
,
Manufacture of Superfine Organics Fibers
(
Naval Research Laboratory
,
Washington, DC
,
1954
), NRL Report 4364.
59.
S. R.
Malkan
, “
Process-structure-property relationships in different molecular weight polypropylene melt-blown webs
,” Ph.D. thesis,
The University of Tennessee
,
Knoxville, USA
,
1990
.
60.
B. D.
Hayes
, “
An experimental and analytical investigation on the production of microfibers using a single-hole melt blowing process
,” Ph.D. thesis,
The University of Tennessee
,
Knoxville, USA
,
1991
.
61.
G.
Straeffer
and
B. C.
Goswami
, “
Mechanical and structural properties of melt-blown fibers
,” in
Principles of Nonwovens
, edited by
J. E.
Riedel
(
INDA
,
Cary, NC
,
1992
), pp.
479
513
.
62.
A. Y. A.
Khan
, “
A fundamental investigation of the effects of die geometry and process variables on fiber diameter and quality of melt blown polypropylene webs
,” Ph.D. thesis,
The University of Tennessee
,
Knoxville, USA
,
1993
.
63.
D.
Zhang
,
C.
Sun
,
J.
Beard
,
H.
Brown
,
I.
Carson
, and
C.
Hwo
, “
Development and characterization of poly(trimethylene terephthalate)- based bicomponents meltblown nonwovens
,”
J. Appl. Polym. Sci.
83
,
1280
1287
(
2002
).
64.
R. R.
Bresee
and
U. A.
Qureshi
, “
Influence of process conditions on melt blown web structure: Part IV–Fiber diameter
,”
J. Eng. Fibers Fabr.
1
(
1
),
32
46
(
2006
).
65.
D.
Duran
and
S.
Perincek
, “
The effect of various production parameters on the physical properties of polypropylene meltblown nonwovens
,”
Ind. Text.
61
(
3
),
117
123
(
2010
).
66.
Y. C.
Zeng
,
Y. F.
Sun
, and
X. H.
Wang
, “
Numerical approach to modeling fiber motion during melt blowing
,”
J. Appl. Polym. Sci.
119
(
4
),
2112
2123
(
2011
).
67.
K.
Duran
,
D.
Duran
,
G.
Oymak
,
K.
Kiliç
,
E.
Öncü
, and
M.
Kara
, “
Investigation of the physical properties of meltblown nonwovens for air filtration
,”
Tekst. Konfeksiyon
23
(
2
),
136
142
(
2013
).
68.
W.
Han
,
X.
Wang
, and
G. S.
Bhat
, “
Structure and air permeability of melt blown nanofiber webs
,”
J. Nanomater. Mol. Nanotechnol.
2
(
3
),
1
5
(
2015
).
69.
M. A.
Hassan
,
B. Y.
Yeom
,
A.
Wilkie
,
B.
Pourdeyhimi
, and
S. A.
Khan
, “
Fabrication of nanofiber meltblown membranes and their filtration properties
,”
J. Membr. Sci.
427
,
336
344
(
2013
).
70.
Y.
Wang
and
X.
Wang
, “
Investigation on a new annular melt-blowing die using numerical simulation
,”
Ind. Eng. Chem. Res.
52
(
12
),
4597
4605
(
2013
).
71.
R.
Nayak
,
I. L.
Kyratzis
,
Y. B.
Truong
,
R.
Padhye
, and
L.
Arnold
, “
Structural and mechanical properties of polypropylene nanofibres fabricated by meltblowing
,”
J. Text. Inst.
106
(
6
),
629
640
(
2015
).
72.
B.
Zhao
, “
Numerical modeling and experimental investigation of fiber diameter of melt blowing nonwoven web
,”
Int. J. Clothing Sci. Technol.
27
(
1
),
91
98
(
2015
).
73.
M.
Guo
,
H.
Liang
,
Z.
Luo
,
Q.
Chen
, and
W.
Wei
, “
Study on melt-blown processing, web structure of polypropylene nonwovens and its BTX adsorption
,”
Fibers Polym.
17
(
2
),
257
265
(
2016
).
74.
R.
Renukarn
,
W.
Takarada
, and
T.
Kikutani
, “
Melt-blowing conditions for preparing webs consisting of fine fibers
,”
AIP Conf. Proc.
1779
,
120002
(
2016
).
75.
R.
Ruamsuk
,
W.
Takarada
, and
T.
Kikutani
, “
Fine filament formation behavior of polymethylpentene and polypropylene near spinneret in melt blowing process
,”
Int. Polym. Process.
31
(
2
),
217
223
(
2016
).
76.
Y.
Yesil
and
G. S.
Bhat
, “
Structure and mechanical properties of polyethylene melt blown nonwovens
,”
Int. J. Clothing Sci. Technol.
28
(
6
),
780
793
(
2016
).
77.
J.
Feng
, “
Preparation and properties of poly(lactic acid) fiber melt blown non-woven disordered mats
,”
Mater. Lett.
189
,
180
183
(
2017
).
78.
G. W.
Sun
,
J.
Song
,
L.
Xu
, and
H.
Wang
, “
Numerical modelling of microfibers formation and motion during melt blowing
,”
J. Text. Inst.
109
(
3
),
300
306
(
2018
).
79.
X.
Hao
,
H.
Huang
, and
Y.
Zeng
, “
Simulation of jet velocity in the melt-blowing process using the coupled air-polymer model
,”
Text. Res. J.
89
(
16
),
3221
3233
(
2018
).
80.
T. T.
Wu
and
R. L.
Shambaugh
, “
Characterization of the melt blowing process with laser Doppler velocimetry
,”
Ind. Eng. Chem. Res.
31
,
379
389
(
1992
).
81.
U. A.
Qureshi
, “
Understanding the role of the collector during melt blowing
,” M.Sc. thesis,
The University of Tennessee
,
Knoxville, USA
,
2001
.
82.
R. R.
Bresee
and
U. A.
Qureshi
, “
Influence of processing conditions on melt blown web structure: Part 1–DCD
,”
Int. Nonwovens J.
13
(
1
),
49
55
(
2004
).
83.
R. R.
Bresee
,
U. A.
Qureshi
, and
M. C.
Pelham
, “
Influence of processing conditions on melt blown web structure: Part 2–Primary airflow rate
,”
Int. Nonwovens J.
14
(
2
),
11
18
(
2005
).
84.
T.
Zapletalova
,
S.
Michielsen
, and
B.
Pourdeyhimi
, “
Polyether based thermoplastic polyurethane melt blown nonwovens
,”
J. Eng. Fibers Fabr.
1
(
1
),
62
72
(
2006
).
85.
R.
Uppal
,
G.
Bhat
,
C.
Eash
, and
K.
Akato
, “
Meltblown nanofiber media for enhanced quality factor
,”
Fibers Polym.
14
(
4
),
660
668
(
2013
).
86.
A.
Ghosal
,
S.
Sinha-Ray
,
L. A.
Yarin
, and
B.
Pourdeyhimi
, “
Numerical prediction of the effect of uptake velocity on three-dimensional structure, porosity and permeability of meltblown nonwoven laydown
,”
Polymer
85
,
19
27
(
2016
).
87.
G.
Sun
,
X.
Sun
, and
X.
Wang
, “
Study on uniformity of a melt-blown fibrous web based on an image analysis technique
,”
e-Polymers
17
(
3
),
211
214
(
2017
).
88.
G.
Sun
,
J.
Yang
,
S.
Xin
,
R.
Yu
, and
X.
Wang
, “
Influence of processing conditions on the basis weight uniformity of melt-blown fibrous webs: Numerical and experimental study
,”
Ind. Eng. Chem. Res.
57
,
9707
9715
(
2018
).
89.
G. S.
Bhat
and
S. R.
Malkan
, “
Polymer-laid web formation
,” in
Handbook of Nonwovens
, edited by
S. J.
Russell
(
Woodhead Publishing in Textiles, CRC Press
,
Cambridge, England
,
2007
), pp.
143
195
, ISBN: 978-1-85573-603-0.
90.
S.
Malkan
and
L.
Wadsworth
, “
Polymer-laid systems
,” in
Nonwovens: Theory, Process, Performance and Testing
, edited by
A. F.
Turbak
(
TAPPI Press
,
Atlanta, Georgia
,
1993
), pp.
171
192
, ISBN: 978-0898522655.
91.
D. W.
Van Krevelen
and
K.
Te Nijenhuis
,
Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions
, 4th ed. (
Elsevier Science
,
Oxford, UK
,
2009
), pp.
1
1030
, ISBN: 9780080548197.
92.
M.
Kucukali Ozturk
,
M.
Venkataraman
, and
R.
Mishra
, “
Influence of structural parameters on thermal performance of polypropylene nonwovens
,”
Polym. Adv. Technol.
29
(
12
),
3027
3034
(
2018
).
93.
J.
Walczak
,
M.
Chrzanowski
, and
I.
Krucińska
, “
Research on a nonwoven fabric made from multi-block biodegradable copolymer based on L-lactide, glycolide, and trimethylene carbonate with shape memory
,”
Molecules
22
(
8
),
1325
(
2017
).
94.
B.
Ellis
and
R.
Smith
,
Polymers: A Property Database
, 2nd ed. (
CRC Press
,
Boca Raton, FL
,
2008
), p.
118
, ISBN: 978-0849339400.
95.
J. E.
Mark
,
Physical Properties of Polymers Handbook
, 2nd ed. (
Springer
,
New York
,
2007
), pp.
1
1076
, ISBN: 9780387312354.
96.
I.
Soltani
and
C. W.
Macosko
, “
Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens
,”
Polymer
145
,
21
30
(
2018
).
97.
S. A.
Kareem
, “
Meltblown web technology: Process and applications
,”
J. Eng. Appl.
2
(
1
),
24
34
(
2000
).
98.
B.
Keene
,
M.
Bourham
,
V.
Viswanath
,
H.
Avci
, and
R.
Kotek
, “
Characterization of degradation of polypropylene nonwovens irradiated by γ-ray
,”
J. Appl. Polym. Sci.
131
(
4
),
39917
(
2014
).
99.
H.
Zhang
,
J.
Liu
,
X.
Zhang
,
C.
Huang
, and
X.
Jin
, “
Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture
,”
RSC Adv.
8
(
15
),
7932
7941
(
2018
).
100.
A.
Kilic
,
E.
Shim
, and
B.
Pourdeyhimi
, “
Electrostatic capture efficiency enhancement of polypropylene electret filters with barium titanate
,”
Aerosol Sci. Technol.
49
(
8
),
666
673
(
2015
).
101.
A.
Brochocka
,
K.
Majchrzycka
, and
K.
Makowski
, “
Modified melt-blown nonwovens for respiratory protective devices against nanoparticles
,”
Fibres Text. East. Eur.
100
(
4
),
106
111
(
2013
).
102.
H.
Xiao
,
J.
Gui
,
G.
Chen
, and
C.
Xiao
, “
Study on correlation of filtration performance and charge behavior and crystalline structure for melt-blown polypropylene electret fabrics
,”
J. Appl. Polym. Sci.
132
(
47
),
42807
(
2015
).
103.
P. C.
Hiemenz
and
T. P.
Lodge
,
Polymer Chemistry
, 2nd ed. (
Taylor & Francis Group, CRC Press
,
Florida, Boca Raton
,
2007
), p.
608
, ISBN: 978-1574447798.
104.
X.
Chen
,
M. A.
Dam
,
K.
Ono
,
H.
Shen
,
S. R.
Nutt
,
K.
Sheran
, and
F.
Wudl
, “
A thermally re-mendable cross-linked polymeric material
,”
Science
295
(
5560
),
1698
1702
(
2002
).
105.
S. J.
Montgomery
,
G.
Kannan
,
E.
Galperin
, and
S. D.
Kim
, “
Thermally stable UV crosslinkable copolyesters: Synthesis, crosslinking, and characterization of poly(1,4-cyclohexylenedimethylene - 1,4-cyclohexane dicarboxylate- co -4,4′-stilbene dicarboxylate)
,”
Macromolecules
43
(
12
),
5238
5244
(
2010
).
106.
A. R.
Tan
,
J. L.
Ifkovits
,
B. M.
Baker
,
D. M.
Brey
,
R. L.
Mauck
, and
J. A.
Burdick
, “
Electrospinning of photocrosslinked and degradable fibrous scaffolds
,”
J. Biomed. Mater. Res., Part A
87
(
4
),
1034
1043
(
2008
).
107.
S. H.
Kim
,
S.-H.
Kim
,
S.
Nair
, and
E.
Moore
, “
Reactive electrospinning of cross-linked poly(2-hydroxyethyl methacrylate) nanofibers and elastic properties of individual hydrogel nanofibers in aqueous solutions
,”
Macromolecules
38
(
9
),
3719
3723
(
2005
).
108.
A.
Gestos
,
P. G.
Whitten
,
G. M.
Spinks
, and
G. G.
Wallace
, “
Crosslinking neat ultrathin films and nanofibers of pH-responsive poly(acrylic acid) by UV radiation
,”
Soft Matter
6
(
5
),
1045
1052
(
2010
).
109.
X.-H.
Qin
and
S.-Y.
Wang
, “
Electrospun nanofibers from crosslinked poly(vinyl alcohol) and its filtration efficiency
,”
J. Appl. Polym. Sci.
109
(
2
),
951
956
(
2008
).
110.
S.
Lee
,
B.
Kim
,
S.-H.
Kim
,
E.
Kim
, and
J.-H.
Jang
, “
Superhydrophobic, reversibly elastic, moldable, and electrospun (SupREME) fibers with multimodal functions: From oil absorbents to local drug delivery adjuvants
,”
Adv. Funct. Mater.
27
(
37
),
1702310
(
2017
).
111.
K.
Sarkar
,
C.
Gomez
,
S.
Zambrano
,
M.
Ramirez
,
E.
De Hoyos
,
H.
Vasquez
, and
K.
Lozano
, “
Electrospinning to forcespinning
,”
Mater. Today
13
(
11
),
12
14
(
2010
).
112.
M.
Wouters
,
E.
Craenmehr
,
K.
Tempelaars
,
H.
Fischer
,
N.
Stroeks
, and
J.
Van Zanten
, “
Preparation and properties of a novel remendable coating concept
,”
Prog. Org. Coat.
64
(
2-3
),
156
162
(
2009
).
113.
B. J.
Adzima
,
H. A.
Aguirre
,
C. J.
Kloxin
,
T. F.
Scott
, and
C. N.
Bowman
, “
Rheological and chemical analysis of reverse gelation in a covalently cross-linked Diels-Alder polymer network
,”
Macromolecules
41
(
23
),
9112
9117
(
2008
).
114.
Y.
Imai
,
H.
Itoh
,
K.
Naka
, and
Y.
Chujo
, “
Thermally reversible IPN organic polymer hybrids utilizing the Diels-Alder reaction
,”
Macromolecules
33
(
12
),
4343
4346
(
2000
).
115.
V.
Froidevaux
,
M.
Borne
,
E.
Laborbe
,
R.
Auvergne
,
A.
Gandini
, and
B.
Boutevin
, “
Study of the Diels-Alder and retro-Diels-Alder reaction between furan derivatives and maleimide for the creation of new materials
,”
RSC Adv.
5
(
47
),
37742
37754
(
2015
).
116.
E.
Goiti
,
F.
Heatley
,
M. B.
Huglin
, and
J. M.
Rego
, “
Kinetic aspects of the Diels-Alder reaction between poly(styrene-co- furfuryl methacrylate) and bismaleimide
,”
Eur. Polym. J.
40
(
7
),
1451
1460
(
2004
).
117.
K.
Inoue
,
M.
Yamashiro
, and
M.
Iji
, “
Recyclable shape-memory polymer: Poly(lactic acid) crosslinked by a thermoreversible Diels-Alder reaction
,”
J. Appl. Polym. Sci.
112
(
2
),
876
885
(
2009
).
118.
C. J.
Kloxin
and
C. N.
Bowman
, “
Covalent adaptable networks: Smart, reconfigurable and responsive network systems
,”
Chem. Soc. Rev.
42
(
17
),
7161
7173
(
2013
).
119.
W.
Denissen
,
J. M.
Winne
, and
F. E.
Du Prez
, “
Vitrimers: Permanent organic networks with glass-like fluidity
,”
Chem. Sci.
7
(
1
),
30
38
(
2016
).
120.
Q.
Shi
,
K.
Yu
,
X.
Kuang
,
X.
Mu
,
C. K.
Dunn
,
M. L.
Dunn
,
T.
Wang
, and
H.
Jerry Qi
, “
Recyclable 3D printing of vitrimer epoxy
,”
Mater. Horiz.
4
(
4
),
598
607
(
2017
).
121.
K.
Jin
,
S.-S.
Kim
,
J.
Xu
,
F. S.
Bates
, and
C. J.
Ellison
, “
Melt-blown cross-linked fibers from thermally reversible Diels-Alder polymer networks
,”
ACS Macro Lett.
7
(
11
),
1339
1345
(
2018
).
122.
K.
Jin
,
A.
Banerji
,
D.
Kitto
,
F. S.
Bates
, and
C. J.
Ellison
, “
Mechanically robust and recyclable cross-linked fibers from melt blown anthracene-functionalized commodity polymers
,”
ACS Appl. Mater. Interfaces
11
(
13
),
12863
12870
(
2019
).
123.
D.
Das
,
A. K.
Pradhan
,
R.
Chattopadhyay
, and
S. N.
Singh
, “
Composite nonwovens
,”
Text. Prog.
44
(
1
),
1
84
(
2012
).
124.
H.
Wang
,
Y.
Zhang
,
H.
Gao
,
X.
Jin
, and
X.
Xie
, “
Composite melt-blown nonwoven fabrics with large pore size as Li-on battery separator
,”
Int. J. Hydrogen Energy
41
(
1
),
324
330
(
2016
).
125.
J.
Zhao
,
C.
Xiao
, and
N.
Xu
, “
Evaluation of polypropylene and poly (butylmethacrylate-co-hydroxyethylmethacrylate) nonwoven material as oil absorbent
,”
Environ. Sci. Pollut. Res.
20
(
6
),
4137
4145
(
2013
).
126.
J.
Erben
,
K.
Pilarova
,
F.
Sanetrnik
,
J.
Chvojka
,
V.
Jencova
,
L.
Blazkova
,
J.
Havlicek
,
O.
Novak
,
P.
Mikes
,
E.
Prosecka
,
D.
Lukas
, and
E.
Kuzelova Kostakova
, “
The combination of meltblown and electrospinning for bone tissue engineering
,”
Mater. Lett.
143
,
172
176
(
2015
).
127.
B.
Gutarowska
and
A.
Michalski
, “
Antimicrobial activity of filtrating meltblown nonwoven with the addition of silver ions
,”
Fibres Text. East. Eur.
74
(
3
),
23
28
(
2009
).
128.
Y.
Liu
,
B.
Cheng
,
N.
Wang
,
W.
Kang
,
W.
Zhang
,
K.
XinG
, and
W.
Yang
, “
Development and performance study of polypropylene/polyester bicomponent melt-blowns for filtration
,”
J. Appl. Polym. Sci.
124
(
1
),
296
301
(
2012
).
129.
T.
Grafe
and
K.
Graham
, “
Polymeric nanofibers and nanofiber webs: A new class of nonwovens
,”
Int. Nonwovens J.
os-12
,
1558925003os
1200113
(
2003
).
130.
R.
Visita
and
D. S.
Katti
, “
Nanofibers and their applications in tissue engineering
,”
Int. J. Nanomed.
1
(
1
),
15
30
(
2006
).
131.
R.
Khajavi
,
M.
Abbasipour
, and
A.
Bahador
, “
Electrospun biodegradable nanofibers scaffolds for bone tissue engineering
,”
J. Appl. Polym. Sci.
133
(
3
),
42883
(
2016
).
132.
D.
Li
and
Y.
Xia
, “
Electrospinning of nanofibers: Reinventing the wheel?
,”
Adv. Mater.
16
(
14
),
1151
1170
(
2004
).
133.
W.
Han
,
S.
Xie
,
X.
Sun
,
X.
Wang
, and
Z.
Yan
, “
Optimization of airflow field via solution blowing for chitosan/PEO nanofiber formation
,”
Fibers Polym.
18
(
8
),
1554
1560
(
2017
).
134.
R.
Nayak
,
Polypropylene Nanofibers: Melt Electrospinning Versus Meltblowing
(
Springer International Publishing
,
Cham, Switzerland
,
2017
), p.
190
, ISBN: 978-3319614571.
135.
R.
Nayak
,
I. L.
Kyratzis
,
Y. B.
Truong
,
R.
Padhye
,
L.
Arnold
,
G.
Peeters
,
M.
O’Shea
, and
L.
Nichols
, “
Fabrication and characterization of polypropylene nanofibres by meltblowing process using different fluids
,”
J. Mater. Sci.
48
(
1
),
273
281
(
2013
).
136.
F.
Zuo
,
D. H.
Tan
,
Z.
Wang
,
S.
Jeung
,
C. W.
Macosko
, and
F. S.
Bates
, “
Nanofibers from melt blown fiber-in-fiber polymer blends
,”
ACS Macro Lett.
2
(
4
),
301
305
(
2013
).
137.
Z.
Wang
,
X.
Liu
,
C. W.
Macosko
, and
F. S.
Bates
, “
Nanofibers from water-extractable melt-blown immiscible polymer blends
,”
Polymer
101
,
269
273
(
2016
).
138.
R.
Nayak
,
R.
Padhye
,
I. L.
Kyratzis
,
Y. B.
Truong
, and
L.
Arnold
, “
Recent advances in nanofibre fabrication techniques
,”
Text. Res. J.
82
(
2
),
129
147
(
2012
).
139.
A.
Wilson
, “
The formation of dry, wet, spunlaid and other types of nonwovens
,” in
Applications of Nonwovens in Technical Textiles
, Woodhead Publishing Series in Textiles, edited by
R. A.
Chapman
(
CRC Press
,
Cambridge, England
,
2010
), pp.
3
16
, ISBN: 978-1-84569-437-1.
140.
A.
Wilkie
and
J.
Haggard
, “
Nanofiber melt blown nonwovens-A new low
,”
Int. Fiber J.
22
(
3
),
48
49
(
2007
).
141.
R.
Chhabra
and
R. L.
Shambaugh
, “
Experimental measurements of fiber threadline vibrations in the melt-blowing process
,”
Ind. Eng. Chem. Res.
35
(
11
),
4366
4374
(
1996
).
142.
W.
Han
and
X.
Wang
, “
Modeling melt blowing fiber with different polymer constitutive equations
,”
Fibers Polym.
17
(
1
),
74
79
(
2016
).
143.
J. H.
Beard
,
R. L.
Shambaugh
,
B. R.
Shambaugh
, and
D. W.
Schmidtke
, “
On-line measurement of fiber-motion during melt blowing
,”
Ind. Eng. Chem. Res.
46
(
22
),
7340
7352
(
2007
).
144.
S.
Xie
and
Y.
Zeng
, “
Online measurement of fiber whipping in the melt-blowing process
,”
Ind. Eng. Chem. Res.
52
(
5
),
2116
2122
(
2013
).
145.
Y.
Sun
,
Y.
Zeng
, and
X.
Wang
, “
Three-dimensional model of whipping motion in the processing of microfibers
,”
Ind. Eng. Chem. Res.
50
(
2
),
1099
1109
(
2011
).
146.
S.
Xie
and
Y.
Zeng
, “
Turbulent air flow field and fiber whipping motion in the melt blowing process: Experimental study
,”
Ind. Eng. Chem. Res.
51
(
14
),
5346
5352
(
2012
).
147.
C.
Chung
and
S.
Kumar
, “
Onset of whipping in the melt blowing process
,”
J. Non-Newtonian Fluid Mech.
192
,
37
47
(
2013
).
148.
S.
Sinha-Ray
,
A. L.
Yarin
, and
B.
Pourdeyhimi
, “
Meltblowing: I-basic physical mechanisms and threadline model
,”
J. Appl. Phys.
108
(
3
),
034912
(
2010
).
149.
A. L.
Yarin
,
S.
Sinha-Ray
, and
B.
Pourdeyhimi
, “
Meltblowing: II-linear and nonlinear waves on viscoelastic polymer jets
,”
J. Appl. Phys.
108
(
3
),
034913
(
2010
).
150.
S.
Xie
,
Y.
Zeng
,
W.
Han
, and
G.
Jiang
, “
An improved Lagrangian approach for simulating fiber whipping in slot-die melt blowing
,”
Fibers Polym.
18
(
3
),
525
532
(
2017
).
151.
A. L.
Yarin
,
S.
Sinha-Ray
, and
B.
Pourdeyhimi
, “
Meltblowing: Multiple polymer jets and fiber-size distribution and lay-down patterns
,”
Polymer
52
(
13
),
2929
2938
(
2011
).
152.
F.
Battocchio
and
M. P. F.
Sutcliffe
, “
Modelling fiber laydown and web uniformity in nonwoven fabric
,”
Modell. Simul. Mater. Sci. Eng.
25
(
3
),
035006
(
2017
).
153.
S.
Xie
and
Y.
Zeng
, “
Fiber spiral motion in a swirl die melt-blowing process
,”
Fibers Polym.
15
(
3
),
553
559
(
2014
).
154.
S.
Xie
,
W.
Han
, and
G.
Jiang
, “
Three dimensional numerical simulation for air flow field in melt blowing
,”
J. Phys.: Conf. Ser.
916
(
1
),
012044
(
2017
).
155.
J.
Musil
and
M.
Zatloukal
, “
Experimental investigation of flow induced molecular weight fraction phenomenon for two linear HDPE polymer melts having same Mn and Mw but different Mz and Mz+1 average molecular weights
,”
Chem. Eng. Sci.
81
,
146
156
(
2012
).
156.
J.
Musil
and
M.
Zatloukal
, “
Historical review of die drool phenomenon in plastic extrusion
,”
Polym. Rev.
54
(
1
),
139
184
(
2014
).
157.
W.
Han
,
G. S.
Bhat
, and
X.
Wang
, “
Investigation of nanofiber breakup in the melt-blowing process
,”
Ind. Eng. Chem. Res.
55
(
11
),
3150
3156
(
2016
).
158.
R. R.
Bresee
and
U. A.
Qureshi
, “
Fiber motion near the collector during melt blowing: Part 2—Fly formation
,”
Int. Nonwovens J.
11
(
3
),
21
27
(
2002
).
159.
L. S.
Pinchuk
,
V. A.
Goldade
,
A. V.
Makarevich
, and
V. N.
Kestelman
, “
Melt blowing techniques
,” in
Melt Blowing Equipment, Technology, and Polymer Fibrous Materials
, Springer Series in Materials Processing (
Springer
,
New York, USA
,
2002
), pp.
5
20
, ISBN: 3-540-43223-x.
160.
E.
Vargas
,
Meltblown Technology Today: An Overview of Raw Materials, Processes, Products, Markets, and Emerging End Uses
(
Miller Freeman
,
San Francisco, CA, USA
,
1989
), pp.
1
316
, ISBN: 9780879301767.
161.
D. H.
Tan
,
P. K.
Herman
,
F. S.
Bates
,
S.
Kumar
, and
C. W.
Macosko
, “
Influence of Laval nozzles on the air flow field in melt blowing apparatus
,”
Chem. Eng. Sci.
80
,
342
348
(
2012
).
162.
K.
Majchrzycka
,
M.
Okrasa
,
A.
Brochocka
, and
W.
Urbaniak-Domagala
, “
Influence of low-temperature plasma treatment on the liquid filtration efficiency of melt-blown PP nonwovens in the conditions of simulated use of respiratory protective equipment
,”
Chem. Process Eng.
38
(
2
),
195
207
(
2017
).
163.
W. C.
Ko
and
R. R.
Bresee
, “
FT-IR microspectroscopic study of shot formation in melt-blown webs
,”
Appl. Spectrosc.
57
(
6
),
636
641
(
2003
).
164.
R. R.
Bresee
, “
Influence of processing conditions on melt blown web structure. Part III—Water quench
,”
Int. Nonwovens J.
14
(
4
),
27
35
(
2005
).
165.
R. R.
Bresee
and
Z.
Yan
, “
Shot development in meltblown webs
,”
J. Text. Inst.
89
(
2
),
304
319
(
1998
).
166.
B.
Haynes
and
M.
Milligan
, “
Experimental investigation of melt blowing
,”
INDA J. Nonwovens Res.
3
(
4
),
20
25
(
1991
).
167.
M. W.
Milligan
and
F.
Utsman
, “
An investigation of the meltblown web defect known as shot
,”
Int. Nonwovens J.
7
(
2
),
65
68
(
1995
).
168.
J.
Wallen
,
J. F.
Fellers
, and
M. W.
Milligan
, “
Small angle light scattering studies of fiber orientation and shot formation in the melt blowing process
,”
Int. Nonwovens J.
7
(
3
),
51
54
(
1995
).
169.
H.
Li
,
H.
Huang
,
X.
Meng
, and
Y.
Zeng
, “
Fabrication of helical microfibers from melt blown polymer blends
,”
J. Polym. Sci., Part B: Polym. Phys.
56
(
13
),
970
977
(
2018
).
You do not currently have access to this content.