This paper investigates the processes by which stable boundary layers are formed through strong surface cooling imposed on neutrally stratified wall-bounded turbulence using high-resolution direct numerical simulation at a moderate Reynolds number. The adjustment of the flow to the imposed strong surface cooling is investigated. We further focus on a strongly stable case where turbulence partially collapses. We show that, due to a significant reduction in turbulence production, turbulence becomes patchy, with a band of turbulence coexisting with quiet regions. The nature of the quiet regions, which are often characterized as laminar, is investigated and shown to be consistent with viscously coupled stratified turbulence. The one-dimensional longitudinal streamwise velocity spectrum exhibits kx5 and kx3 behavior in the buffer and logarithmic layers, respectively, adjacent to an active region of three-dimensional turbulence with a kx5/3 spectrum. Scenarios for turbulence recovery from such a patchy state are also discussed. We show that the presence of outer layer turbulence above z+ ≈ 300 is a key requirement for recovery. For higher values of stratification, it is shown that inner layer turbulence is damped entirely and outer layer turbulence is damped subsequently.

1.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer Science & Business Media
,
2012
), Vol. 13.
2.
J. C.
Wyngaard
,
Turbulence in the Atmosphere
(
Cambridge University Press
,
2010
).
3.
L.
Mahrt
, “
Stably stratified atmospheric boundary layers
,”
Annu. Rev. Fluid Mech.
46
,
23
45
(
2014
).
4.
F.
Zonta
and
A.
Soldati
, “
Stably-stratified wall-bounded turbulence
,”
Appl. Mech. Rev.
70
,
040801
(
2018
).
5.
V.
Armenio
and
S.
Sarkar
, “
An investigation of stably stratified turbulent channel flow using large-eddy simulation
,”
J. Fluid Mech.
459
,
1
42
(
2002
).
6.
F.
Karimpour
and
S. K.
Venayagamoorthy
, “
On turbulent mixing in stably stratified wall-bounded flows
,”
Phys. Fluids
27
,
046603
(
2015
).
7.
O.
Flores
and
J. J.
Riley
, “
Analysis of turbulence collapse in the stably stratified surface layer using direct numerical simulation
,”
Boundary-Layer Meteorol.
139
,
241
259
(
2011
).
8.
G.
Brethouwer
,
Y.
Duguet
, and
P.
Schlatter
, “
Turbulent–laminar coexistence in wall flows with Coriolis, buoyancy or Lorentz forces
,”
J. Fluid Mech.
704
,
137
172
(
2012
).
9.
L.
Ran
,
Z.
Deng
,
X.
Xu
,
P.
Yan
,
W.
Lin
,
Y.
Wang
,
P.
Tian
,
P.
Wang
,
W.
Pan
, and
D.
Lu
, “
Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain
,”
Atmos. Chem. Phys.
16
,
10441
10454
(
2016
).
10.
A. J.
Ding
,
T.
Wang
,
V.
Thouret
,
J.-P.
Cammas
, and
P.
Nédélec
, “
Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program
,”
Atmos. Chem. Phys.
8
,
1
13
(
2008
).
11.
Z.
Li
,
J.
Guo
,
A.
Ding
,
H.
Liao
,
J.
Liu
,
Y.
Sun
,
T.
Wang
,
H.
Xue
,
H.
Zhang
, and
B.
Zhu
, “
Aerosol and boundary-layer interactions and impact on air quality
,”
Nat. Sci. Rev.
4
,
810
833
(
2017
).
12.
J.
Cloern
, “
Temporal dynamics and ecological significance of salinity stratification in an estuary (South San-Francisco Bay, USA)
,”
Oceanol. Acta
7
,
137
141
(
1984
).
13.
R.
Adrian
,
D. O.
Hessen
,
T.
Blenckner
,
H.
Hillebrand
,
S.
Hilt
,
E.
Jeppesen
,
D. M.
Livingstone
, and
D.
Trolle
, “
Environmental impacts—Lake ecosystems
,” in
North Sea Region Climate Change Assessment
, edited by
M.
Quante
and
F.
Colijn
(
Springer International Publishing
,
Cham
,
2016
), pp.
315
340
.
14.
M.
Abkar
and
F.
Porté-Agel
, “
The effect of free-atmosphere stratification on boundary-layer flow and power output from very large wind farms
,”
Energies
6
,
2338
2361
(
2013
).
15.
J. J.
Riley
and
M.-P.
Lelong
, “
Fluid motions in the presence of strong stable stratification
,”
Annu. Rev. Fluid Mech.
32
,
613
657
(
2000
).
16.
E.
Lindborg
, “
The energy cascade in a strongly stratified fluid
,”
J. Fluid Mech.
550
,
207
242
(
2006
).
17.
C. J.
Lang
and
M. L.
Waite
, “
Scale-dependent anisotropy in forced stratified turbulence
,”
Phys. Rev. Fluids
4
,
044801
(
2019
).
18.
J.
Jiménez
, “
The physics of wall turbulence
,” in
Proceedings of the 20th IUPAP International Conference on Statistical Physics
[
Physica A
263
,
252
262
(
1999
)].
19.
J.
Jiménez
, “
Near-wall turbulence
,”
Phys. Fluids
25
,
101302
(
2013
).
20.
R. P.
Garg
,
J. H.
Ferziger
,
S. G.
Monismith
, and
J. R.
Koseff
, “
Stably stratified turbulent channel flows. I. stratification regimes and turbulence suppression mechanism
,”
Phys. Fluids
12
,
2569
2594
(
2000
).
21.
J. R.
Taylor
,
S.
Sarkar
, and
V.
Armenio
, “
Large eddy simulation of stably stratified open channel flow
,”
Phys. Fluids
17
,
116602
(
2005
).
22.
F. T. M.
Nieuwstadt
, “
Direct numerical simulation of stable channel flow at large stability
,”
Boundary-Layer Meteorol.
116
,
277
299
(
2005
).
23.
M.
García-Villalba
and
J. C.
del Álamo
, “
Turbulence modification by stable stratification in channel flow
,”
Phys. Fluids
23
,
045104
(
2011
).
24.
P.
He
, “
A high order finite difference solver for massively parallel simulations of stably stratified turbulent channel flows
,”
Comput. Fluids
127
,
161
173
(
2016
).
25.
R. P.
Garg
,
J. H.
Ferziger
, and
S. G.
Monismith
, “
Hybrid spectral finite difference simulations of stratified turbulent flows on distributed memory architectures
,”
Int. J. Numer. Methods Fluids
24
,
1129
1158
(
1997
).
26.
E.
Deusebio
,
P.
Schlatter
,
G.
Brethouwer
, and
E.
Lindborg
, “
Direct numerical simulations of stratified open channel flows
,”
J. Phys.: Conf. Ser.
318
,
022009
(
2011
).
27.
O.
Flores
and
J. J.
Riley
, “
Energy balance in stably-stratified, wall-bounded turbulence
,” in
Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy
, edited by
H. J.
Clercx
and
G. F.
Van Heijst
(
Springer International Publishing
,
Cham
,
2018
), pp.
89
99
.
28.
J. M. M.
Donda
,
I. G. S.
van Hooijdonk
,
A. F.
Moene
,
H. J. J.
Jonker
,
G. J. F.
van Heijst
,
H. J. H.
Clercx
, and
B. J. H.
van de Wiel
, “
Collapse of turbulence in stably stratified channel flow: A transient phenomenon
,”
Q. J. R. Metereol. Soc.
141
,
2137
2147
(
2015
).
29.
J. M. M.
Donda
,
I. G. S.
van Hooijdonk
,
A. F.
Moene
,
G. J. F.
van Heijst
,
H. J. H.
Clercx
, and
B. J. H.
van de Wiel
, “
The maximum sustainable heat flux in stably stratified channel flows
,”
Q. J. R. Metereol. Soc.
142
,
781
792
(
2016
).
30.
B. J. H. V.
de Wiel
,
A. F.
Moene
,
H. J. J.
Jonker
,
P.
Baas
,
S.
Basu
,
J. M. M.
Donda
,
J.
Sun
, and
A. A. M.
Holtslag
, “
The minimum wind speed for sustainable turbulence in the nocturnal boundary layer
,”
J. Atmos. Sci.
69
,
3116
3127
(
2012
).
31.
S.
Komori
,
R.
Nagaosa
,
Y.
Murakami
,
S.
Chiba
,
K.
Ishii
, and
K.
Kuwahara
, “
Direct numerical simulation of three-dimensional open-channel flow with zero-shear gas–liquid interface
,”
Phys. Fluids A
5
,
115
125
(
1993
).
32.
S.
Komori
,
R.
Kurose
,
K.
Iwano
,
T.
Ukai
, and
N.
Suzuki
, “
Direct numerical simulation of wind-driven turbulence and scalar transfer at sheared gas–liquid interfaces
,”
J. Turbul.
11
,
N32
(
2010
).
33.
J.
Lee
,
J.
Suh
,
H. J.
Sung
, and
B.
Pettersen
, “
Structures of turbulent open-channel flow in the presence of an air–water interface
,”
J. Turbul.
13
,
N18
(
2012
).
34.
S.
Kara
,
M. C.
Kara
,
T.
Stoesser
, and
T. W.
Sturm
, “
Free-surface versus rigid-lid LES computations for bridge-abutment flow
,”
J. Hydraul. Eng.
141
,
04015019
(
2015
).
35.
B. J. H. V.
de Wiel
,
E.
Vignon
,
P.
Baas
,
I. G. S.
van Hooijdonk
,
S. J. A.
van der Linden
,
J. A.
van Hooft
,
F. C.
Bosveld
,
S. R.
de Roode
,
A. F.
Moene
, and
C.
Genthon
, “
Regime transitions in near-surface temperature inversions: A conceptual model
,”
J. Atmos. Sci.
74
,
1057
1073
(
2017
).
36.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
, 2nd ed., Cambridge Monographs on Mechanics (
Cambridge University Press
,
2012
).
37.
P.
Davidson
,
Y.
Kaneda
, and
K.
Sreenivasan
,
Ten Chapters in Turbulence
(
Cambridge University Press
,
2012
).
38.
A. A.
Townsend
, “
Equilibrium layers and wall turbulence
,”
J. Fluid Mech.
11
,
97
120
(
1961
).
39.
A. A.
Townsend
,
The Structure of Turbulent Shear Flow
(
Cambridge University Press
,
1976
).
40.
J. R.
Taylor
, “
Numerical simulations of the stratified oceanic bottom boundary layer
,” Ph.D. thesis,
University of California San Diego
,
2008
.
41.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
,
A.
Thomas
, Jr.
 et al.,
Spectral Methods in Fluid Dynamics
(
Springer Science & Business Media
,
1988
).
42.
G.
Blaisdell
,
E.
Spyropoulos
, and
J.
Qin
, “
The effect of the formulation of nonlinear terms on aliasing errors in spectral methods
,”
Appl. Numer. Math.
21
,
207
219
(
1996
).
43.
C. A. J.
Fletcher
,
Computational Techniques for Fluid Dynamics 2: Specific Techniques for Different Flow Categories
(
Springer
,
1991
).
44.
A. W.
Vreman
and
J. G. M.
Kuerten
, “
Statistics of spatial derivatives of velocity and pressure in turbulent channel flow
,”
Phys. Fluids
26
,
085103
(
2014
).
45.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
46.
O.
Flores
and
J.
Jiménez
, “
Hierarchy of minimal flow units in the logarithmic layer
,”
Phys. Fluids
22
,
071704
(
2010
).
47.
A.
Lozano-Durán
and
J.
Jiménez
, “
Effect of the computational domain on direct simulations of turbulent channels up to Reτ = 4200
,”
Phys. Fluids
26
,
011702
(
2014
).
48.
F.
Lluesma-Rodríguez
,
S.
Hoyas
, and
M.
Perez-Quiles
, “
Influence of the computational domain on DNS of turbulent heat transfer up to Reτ = 2000 for Pr = 0.71
,”
Int. J. Heat Mass Transfer
122
,
983
992
(
2018
).
49.
J.
Cuxart
,
C.
Yagüe
,
G.
Morales
,
E.
Terradellas
,
J.
Orbe
,
J.
Calvo
,
A.
Fernández
,
M. R.
Soler
,
C.
Infante
,
P.
Buenestado
,
A.
Espinalt
,
H. E.
Joergensen
,
J. M.
Rees
,
J.
Vilá
,
J. M.
Redondo
,
I. R.
Cantalapiedra
, and
L.
Conangla
, “
Stable atmospheric boundary-layer experiment in Spain (SABLES 98): A report
,”
Boundary-Layer Meteorol.
96
,
337
370
(
2000
).
50.
Z.
Sorbjan
, “
Gradient-based scales and similarity laws in the stable boundary layer
,”
Q. J. R. Metereol. Soc.
136
,
1243
1254
(
2010
).
51.
O.
Williams
,
T.
Hohman
,
T.
Van Buren
,
E.
Bou-Zeid
, and
A. J.
Smits
, “
The effect of stable thermal stratification on turbulent boundary layer statistics
,”
J. Fluid Mech.
812
,
1039
1075
(
2017
).
52.
J.
Jiménez
, “
Turbulence and vortex dynamics
,” Notes for the Polytecnique Course on Turbulence,
2004
.
53.
N.
Hutchins
and
I.
Marusic
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc., A
365
(
1852
),
647
664
(
2007
).
54.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
28
(
2007
).
55.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, streams, and convergence zones in turbulent flows
,” Studying Turbulence Using Numerical Simulation Databases, Technical Report CTR-S88,
1988
, pp.
193
208
.
56.
X.
Dong
,
G.
Dong
, and
C.
Liu
, “
Study on vorticity structures in late flow transition
,”
Phys. Fluids
30
,
104108
(
2018
).
57.
G.
Eitel-Amor
,
R.
Örlü
,
P.
Schlatter
, and
O.
Flores
, “
Hairpin vortices in turbulent boundary layers
,”
Phys. Fluids
27
,
025108
(
2015
).
58.
N. E.
Sujovolsky
,
P. D.
Mininni
, and
A.
Pouquet
, “
Generation of turbulence through frontogenesis in sheared stratified flows
,”
Phys. Fluids
30
,
086601
(
2018
).
59.
R. J.
Adrian
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
60.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
61.
R. L.
Coulter
, “
A case study of turbulence in the stable nocturnal boundary layer
,”
Boundary-Layer Meteorol.
52
,
75
91
(
1990
).
62.
Z.
Sorbjan
, “
Local structure of turbulence in stably stratified boundary layers
,”
J. Atmos. Sci.
63
,
1526
1537
(
2006
).
63.
M. L.
Waite
and
P.
Bartello
, “
Stratified turbulence dominated by vortical motion
,”
J. Fluid Mech.
517
,
281
308
(
2004
).
64.
M. L.
Waite
, “
Direct numerical simulations of laboratory-scale stratified turbulence
,” in
Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations
(
Wiley
,
2014
), pp.
159
175
.
65.
P. A.
Davidson
,
Turbulence in Rotating, Stratified and Electrically Conducting Fluids
(
Cambridge University Press
,
2013
).
66.
T. M.
Dillon
and
D. R.
Caldwell
, “
The Batchelor spectrum and dissipation in the upper ocean
,”
J. Geophys. Res.: Oceans
85
,
1910
1916
, https://doi.org/10.1029/jc085ic04p01910 (
1980
).
67.
S. H.
Derbyshire
, “
Nieuwstadt’s stable boundary layer revisited
,”
Q. J. R. Metereol. Soc.
116
,
127
158
(
1990
).
68.
J.
Jiménez
and
A.
Pinelli
, “
The autonomous cycle of near-wall turbulence
,”
J. Fluid Mech.
389
,
335
359
(
1999
).
69.
S.
Genieys
and
M.
Massot
, “
From Navier-Stokes equations to Oberbeck-Boussinesq approximation: A unified approach
,” Paru comme un rapport interne de l’unité MAPLY (UMR 5585-Lyon) en 2001,
2001
, http://maply.univ-lyonl.fr/publis/publiv/2001/331/publi.ps.gz.
You do not currently have access to this content.