We report the temporal and spatiotemporal stability analyses of antisymmetric, free shear, viscoelastic flows obeying the Oldroyd-B constitutive equation in the limit of low to moderate Reynolds number (Re) and Weissenberg number (We). The resulting fourth-order Orr-Sommerfeld equation is reduced to a set of six auxiliary equations that are numerically integrated starting from the rescaled far-field conditions, i.e., via Compound Matrix Method. The temporal stability analysis indicates that with increasing We, (a) the entire range of the most unstable mode is shifted toward longer waves (i.e., the entire region of temporal instability is gradually concentrated near zero wavenumber), (b) the vorticity structure contours are dilated, and (c) the residual Reynolds stresses are diminished. All these analogous observations previously reported in the inertial limit [J. Azaiez and G. M. Homsy, “Linear stability of free shear flow of viscoelastic liquids,” J. Fluid Mech. 268, 37–69 (1994).] suggest a viscoelastic destabilization mechanism operating at low and moderate Re. The Briggs idea of analytic continuation is deployed to classify regions of temporal stability, absolute and convective instabilities, as well as evanescent modes. The main result is that the free shear flow of dilute polymeric liquids is either (absolutely/convectively) unstable for all Re or the transition to instability occurs at comparatively low Re, a finding attributed to the fact that viscoelasticity aggravates instabilities via shear-induced anisotropy and the slow relaxation effects.

1.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed., Fluid Mechanics Vol. 1 (
Wiley Intersciences
,
1987
).
2.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed., Kinetic Theory Vol. 2 (
Wiley Intersciences
,
1987
).
3.
T. M.
Squires
and
S. R.
Quake
, “
Microfluidics: Fluid physics at nanoliter scale
,”
Rev. Mod. Phys.
77
,
977
1026
(
2005
).
4.
C. M.
White
and
M. G.
Mungal
, “
Mechanics and prediction of turbulent drag reduction with polymer additives
,”
Annu. Rev. Fluid Mech.
40
,
235
256
(
2008
).
5.
S.
Sircar
and
A.
Roberts
, “
Ion mediated crosslink driven mucous swelling kinetics
,”
Discrete Contin. Dyn. Syst.-Ser. B
21
,
1937
1951
(
2016
).
6.
S.
Sircar
,
E.
Aisenbrey
,
S. J.
Bryant
, and
D. M.
Bortz
, “
Determining equilibrium osmolarity in poly(ethylene glycol)/chondrotin sulfate gels mimicking articular cartilage
,”
J. Theor. Biol.
364
,
397
406
(
2015
).
7.
S.
Sircar
and
D. M.
Bortz
, “
Impact of flow on ligand-mediated bacterial flocculation
,”
Math. Biosci.
245
,
314
321
(
2013
).
8.
S.
Sircar
,
J. G.
Younger
, and
D. M.
Bortz
, “
Sticky surface: Sphere-sphere adhesion dynamics
,”
J. Biol. Dyn.
9
,
79
(
2014
).
9.
S.
Sircar
and
A. J.
Roberts
, “
Surface deformation and shear flow in ligand mediated cell adhesion
,”
J. Math. Biol.
73
,
1035
1052
(
2016
).
10.
M.
Destarde
,
A. N.
Annaidh
, and
C. D.
Coman
, “
Bending of soft biological tissues
,”
Int. J. Solids Struct.
46
,
4322
4330
(
2009
).
11.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
, 2nd ed. (
Cambridge University Press
,
2004
).
12.
T. K.
Sengupta
,
Instabilities of Flows and Transition to Turbulence
(
CRC Press
,
Boca Raton
,
2016
).
13.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
14.
G. K.
Batchelor
,
H. K.
Moffatt
, and
M. G.
Worster
,
Perspectives in Fluid Dynamics: A Collective Introduction to Current Research
(
Cambridge University Press
,
2002
).
15.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
2012
), Vol. 142.
16.
S.
Kalliadasis
,
C.
Ruyer-Quil
,
B.
Scheid
, and
M. G.
Velarde
,
Falling Liquid Films
(
Springer
,
2012
), Vol. 176.
17.
K.
Mikaelian
, “
Boussinesq approximation for Rayleigh-Taylor and Richtmyer-Meshkov instabilities
,”
Phys. Fluids
26
,
054103
(
2014
).
18.
Z.
Huang
and
X.
Wu
, “
A non-perturbative approach to spatial instability of weakly non-parallel shear flows
,”
Phys. Fluids
27
,
054102
(
2015
).
19.
T. K.
Sengupta
,
A.
Sengupta
,
N.
Sharma
,
S.
Sengupta
,
A.
Bhole
, and
K. S.
Shruti
, “
Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts
,”
Phys. Fluids
28
,
094102
(
2016
).
20.
S.
Bhaumik
and
T. K.
Sengupta
, “
Impulse response and spatio-temporal wave-packets: The common feature of rogue waves, tsunami, and transition to turbulence
,”
Phys. Fluids
29
,
124103
(
2017
).
21.
K. L.
Kang
and
K. S.
Yeo
, “
Hybrid POD-FFT analysis of nonlinear evolving coherent structures of DNS wavepacket in laminar-turbulent transition
,”
Phys. Fluids
29
,
084105
(
2017
).
22.
P.
Sundarama
,
T. K.
Sengupta
, and
S.
Sengupta
, “
Is Tollmien-Schlichting wave necessary for transition of zero pressure gradient boundary layer flow?
,”
Phys. Fluids
31
,
031701
(
2019
).
23.
R. G.
Larson
,
E. S. G.
Shaqfeh
, and
S. J.
Mueller
, “
A purely elastic instability in Taylor-Couette flow
,”
J. Fluid Mech.
218
,
573
600
(
1990
).
24.
A.
Groisman
and
V.
Steinberg
, “
Mechaism of elastic instability in Couette flow of polymer solutions: Experiments
,”
Phys. Fluids
10
,
2451
(
1998
).
25.
A.
Groisman
and
V.
Steinberg
, “
Elastic turbulence in a polymer solution flow
,”
Nature
405
,
53
55
(
2000
).
26.
R. G.
Larson
, “
Turbulence without inertia
,”
Nature
405
,
27
28
(
2000
).
27.
P.
Garg
,
I.
Chaudhary
,
M.
Khalid
,
V.
Shankar
, and
G.
Subramanian
, “
Viscoelastic pipe flow is linearly unstable
,”
Phys. Rev. Lett.
121
,
024502
(
2018
).
28.
R. J.
Briggs
,
Electron-Stream Interaction with Plasmas
(
MIT Press
,
Cambridge
,
1964
).
29.
A.
Bers
,
Space-Time Evolution of Plasma Instabilities-Absolute and Convective
, Handbook of Plasma Physics Vol. 1 (
North-Holland Publishing Company
,
Amsterdam
,
1983
).
30.
J.
Azaiez
and
G. M.
Homsy
, “
Linear stability of free shear flow of viscoelastic liquids
,”
J. Fluid Mech.
268
,
37
69
(
1994
).
31.
P. A.
Stone
,
A.
Roy
,
R. G.
Larson
,
F.
Waleffe
, and
M. D.
Graham
, “
Polymer drag reduction in exact coherent structures of plane shear flow
,”
Phys. Fluids
16
,
3470
3482
(
2004
).
32.
H. J.
Wilson
and
J. M.
Rallison
, “
Instability of channel flows of elastic liquids having continuously stratified properties
,”
J. Non-Newtonian Fluid Mech.
85
,
273
298
(
1999
).
33.
J. C.
Miller
and
J. M.
Rallison
, “
Interfacial instability between sheared elastic liquids in a channel
,”
J. Non-Newtonian Fluid Mech.
143
,
71
87
(
2007
).
34.
R.
Govindarajan
and
K. C.
Sahu
, “
Instabilities in viscosity-stratified flow
,”
Annu. Rev. Fluid Mech.
46
,
331
353
(
2013
).
35.
V.
Steinberg
, “
Role of thermal noise in dynamics of non-equilibrium systems: Macro-, meso- and microscopic
,”
J. Stat. Phys.
175
,
664
680
(
2018
).
36.
M. J.
Ablowitz
and
A. S.
Fokkas
,
Complex Variables: Introduction and Applications
(
Cambridge University Press
,
2003
).
37.
R. J.
Lingwood
, “
Absolute instability of the Ekman layer and related rotating flows
,”
J. Fluid Mech.
331
,
405
428
(
1997
).
38.
P. G.
Drazin
,
M. B.
Zaturska
, and
W. H. H.
Banks
, “
On the normal modes of parallel flow of inviscid stratified fluid. Part 2. Unbounded flow with propagation at infinity
,”
J. Fluid Mech.
95
,
681
705
(
1979
).
39.
K.
Kupfer
,
A.
Bers
, and
A. K.
Ram
, “
The cusp map in the complex-frequency plane for absolute instability
,”
Phys. Fluids
30
,
3075
3082
(
1987
).
40.
B. S.
Ng
and
W. H.
Reid
, “
The compound matrix method for ordinary differential equations
,”
J. Comput. Phys.
58
,
209
228
(
1985
).
41.
A.
Davey
, “
On the numerical solution of difficult boundary-value problems
,”
J. Comput. Phys.
35
,
36
47
(
1980
).
42.
W.
Koch
, “
Direct resonance in Orr-Sommerfeld problems
,”
Acta Mech.
59
,
11
29
(
1986
).
43.
T.
Podgorski
and
A.
Belmonte
, “
Surface folds during the penetration of a viscoelastic fluid by a sphere
,”
J. Fluid Mech.
460
,
337
(
2002
).
44.
A.
Lindner
and
C.
Wagner
, “
Viscoelastic surface instabilities
,”
C. R. Phys.
10
,
712
727
(
2009
).
You do not currently have access to this content.