A generalized model for the chaotic disintegration of a liquid due to an arbitrarily shaped projectile is proposed. In particular, the model uses percolation theory to predict the fragmentation process of blood, resulting in forward spatter to determine the number of droplets, as well as their sizes and initial velocities resulting from the flow field generated by a 7.62 × 39 mm and a 0.45 auto bullet. Blood viscoelasticity, which slows down the initial velocities of the droplets, is accounted for. The main physical mechanisms responsible for the chaotic disintegration of blood in the case of forward spattering are (i) the Rayleigh-Taylor instability associated with denser blood accelerating toward lighter air and (ii) a cascade of instability phenomena triggered by the original Rayleigh-Taylor instability because the Reynolds number is of the order of 107. Blood is viscoelastic, therefore, its disintegration into individual droplets results in ligament formation with strong uniaxial elongation, which is characterized by the extremely high values of the Deborah number leading to an almost purely elastic behavior and brittlelike fracture. The blood droplet spray then propagates in air, and deposition on the floor is calculated accounting for gravity and air drag forces, with the latter being diminished by the collective effect related to the droplet-droplet interaction. Also, the experimental data acquired in this work are presented and compared with the theoretical predictions. The agreement between the predictions and the data is satisfactory. The present fluid mechanical model holds great promise for forensic applications.

1.
T.
Bevel
and
R. M.
Gardner
,
Bloodstain Pattern Analysis with an Introduction to Crime Scene Reconstruction
(
CRC
,
Boca Raton
,
2008
).
2.
D.
Attinger
,
C.
Moore
,
A.
Donaldson
,
A.
Jafari
, and
H. A.
Stone
, “
Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities
,”
Forensic Sci. Int.
231
,
375
396
(
2013
).
3.
S.
Siu
,
J.
Pender
,
F.
Springer
,
F.
Tulleners
, and
W.
Ristenpart
, “
Quantitative differentiation of bloodstain patterns resulting from gunshot and blunt force impacts
,”
J. Forensic Sci.
62
,
1166
1179
(
2017
).
4.
C.
Rizer
,
Police Mathematics
(
Thomas
,
Springfield
,
1955
).
5.
W. F.
Rowe
, “
Errors in the determination of the point of origin of bloodstains
,”
Forensic Sci. Int.
161
,
47
51
(
2006
).
6.
K. G.
de Bruin
,
R. D.
Stoel
, and
J. C. M.
Limborgh
, “
Improving the point of origin determination in bloodstain pattern analysis
,”
J. Forensic Sci.
56
,
1476
1482
(
2011
).
7.
N.
Behrooz
, “
Bloodstain pattern analysis for determination of point of origin
,” B.Sc. thesis,
University of Toronto
,
2009
.
8.
M. B.
Illes
,
A. L.
Carter
,
P. L.
Laturnus
, and
A. B.
Yamashita
, “
Use of BackTracktm computer program for bloodstain pattern analysis of stains from downward-moving drops
,”
Can. Soc. Forensic Sci. J.
38
,
213
217
(
2005
).
9.
A. L.
Carter
, “
The directional analysis of bloodstain patterns: Theory and experimental validation
,”
Can. Soc. Forensic Sci. J.
34
,
173
189
(
2001
).
10.
R.
Kanable
,
BackTrack Going Forward
(
Law Enforcement Technology
,
2006
).
11.
A. L.
Carter
,
J.
Forsythe-Erman
,
V.
Hawkes
, and
A. B.
Yamashita
, “
Validation of the BackTracktm suite of programs for bloodstain pattern analysis
,”
J. Forensic Identif.
56
,
242
254
(
2006
).
12.
A. L.
Carter
,
M.
Illes
,
K.
Maloney
,
A. B.
Yamashita
,
B.
Allen
,
B.
Brown
,
L.
Davidson
,
G.
Ellis
,
J.
Gallant
,
A.
Gradkowski
,
J.
Hignell
,
S.
Jory
,
P. L.
Laturnus
,
C. C.
Moore
,
R.
Pembroke
,
A.
Richard
,
R.
Spenard
, and
C.
Stewart
, “
Further validation of the BackTracktm computer program for bloodstain pattern analysis: Precision and accuracy
,”
Int. Assoc. Bloodstain Pattern Anal. News
21
,
15
22
(
2005
).
13.
B. T.
Cecchetto
, “
Nonlinear blood pattern reconstruction
,” M.S. thesis,
The University of British Columbia
,
2010
.
14.
C. R.
Varney
and
F.
Gittes
, “
Locating the source of projectile fluid droplets
,”
Am. J. Phys.
79
,
838
842
(
2011
).
15.
N.
Laan
,
K. G.
de Bruin
,
D.
Slenter
,
J.
Wilhelm
,
M.
Jermy
, and
D.
Bonn
, “
Bloodstain pattern analysis: Implementation of a fluid dynamic model for position determination of victims
,”
Sci. Rep.
5
,
11461
(
2015
).
16.
P. M.
Comiskey
,
A. L.
Yarin
,
S.
Kim
, and
D.
Attinger
, “
Prediction of blood back spatter from a gunshot in bloodstain pattern analysis
,”
Phys. Rev. Fluids
1
,
043201
(
2016
).
17.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis
,”
Phys. Rev. Fluids
2
,
073906
(
2017
).
18.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover
,
New York
,
1981
).
19.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
High-speed video analysis of forward and backward spattered blood droplets
,”
Forensic Sci. Int.
276
,
134
141
(
2017
).
20.
M. T.
Murzabaev
and
A. L.
Yarin
, “
Dynamics of sprinkler jets
,”
Fluid Dyn.
20
,
715
722
(
1985
).
21.
P. M.
Comiskey
,
A. L.
Yarin
, and
D.
Attinger
, “
Theoretical and experimental investigation of forward spatter of blood from a gunshot
,”
Phys. Rev. Fluids
3
,
063901
(
2018
).
22.
A. L.
Yarin
,
I. V.
Roisman
, and
C.
Tropea
,
Collision Phenomena in Liquids and Solids
(
Cambridge University Press
,
Cambridge
,
2017
).
23.
A. L.
Yarin
,
Free Liquid Jets and Films: Hydrodynamics and Rheology
(
Longman Scientific & Technical and John Wiley & Sons
,
Harlow, New York
,
1993
).
24.
A. L.
Yarin
,
I. V.
Roisman
,
K.
Weber
, and
V.
Hohler
, “
Model for ballistic fragmentation and behind-armor debris
,”
Int. J. Impact Eng.
24
,
171
201
(
2000
).
25.
A.
Kolbasov
,
P. M.
Comiskey
,
R. P.
Sahu
,
S.
Sinha-Ray
,
A. L.
Yarin
,
B. S.
Sikarwar
,
S.
Kim
,
T. Z.
Jubery
, and
D.
Attinger
, “
Blood rheology in shear and uniaxial elongation
,”
Rheol. Acta
55
,
901
908
(
2016
).
26.
S.
Chien
,
R. G.
King
,
R.
Skalak
,
S.
Usami
, and
A. L.
Copley
, “
Viscoelastic properties of human blood and red cell suspensions
,”
Biorheology
12
,
341
346
(
1975
).
27.
A. L.
Copley
,
R. G.
King
,
S.
Chien
,
S.
Usami
,
R.
Skalak
, and
C. R.
Huang
, “
Microscopic observations of viscoelasticity of human blood in steady and oscillatory shear
,”
Biorheology
12
,
257
263
(
1975
).
28.
M.
Brust
,
C.
Schaefer
,
R.
Doerr
,
L.
Pan
,
M.
Garcia
,
P. E.
Arratia
, and
C.
Wagner
, “
Rheology of human blood plasma: Viscoelastic versus Newtonian behavior
,”
Phys. Rev. Lett.
110
,
078305
(
2013
).
29.
D.
Staufer
, “
Scaling theory of percolation clusters
,”
Phys. Rep.
54
,
1
74
(
1979
).
30.
D.
Staufer
,
Introduction to Percolation Theory
(
Taylor & Francis
,
London
,
1985
).
31.
L. M.
Milne-Thomson
,
Theoretical Hydrodynamics
, 5th ed. (
The Macmillan Press Ltd.
,
London
,
1968
).
32.
I. V.
Roisman
,
A. L.
Yarin
, and
M. B.
Rubin
, “
Oblique penetration of a rigid projectile into an elastic-plastic target
,”
Int. J. Impact Eng.
19
,
769
795
(
1997
).
33.
G. B.
Arfken
,
H. J.
Weber
, and
F. E.
Harris
,
Mathematical Methods for Physicists
, 7th ed. (
Academic Press
,
Cambridge, MA
,
2013
).
34.
A. D.
Polyanin
and
A. V.
Manzhirov
,
Handbook of Integral Equations
, 2nd ed. (
Chapman and Hall CRC
,
Boca Raton
,
2008
).
35.
G.
Astarita
and
G.
Marrucci
,
Principles of Non-Newtonian Fluid Mechanics
(
McGraw Hill
,
New York
,
1974
).
36.
A. L.
Yarin
,
B.
Pourdeyhimi
, and
S.
Ramakrishna
,
Fundamentals and Applications of Micro- and Nanofibers
(
Cambridge University Press
,
Cambridge
,
2014
).
37.
M.
Kornfeld
,
Elasticity and Strength of Liquids
(
GITTL
,
Moscow
,
1951
).
38.
H.
Kolsky
and
D.
Rader
, “
Stress waves and fracture
,” in
Fracture
, edited by
H.
Liebowitz
(
Academic Press
,
New York
,
1969
), Vol. 1.
39.
G.
Cherepanov
,
Mechanics of Brittle Fracture
(
McGraw Hill
,
New York
,
1979
).
40.
L. A.
Dukhovskii
,
P. I.
Kovalev
, and
A. N.
Rozhkov
, “
Disintegration of polymer liquids at high-speed impact
,”
Polymer Science A
46
,
31
44
(
2004
).
41.
J. W.
Hoyt
,
J. J.
Taylor
, and
C. D.
Runge
, “
The structure of jets of water and polymer solution in air
,”
J. Fluid Mech.
63
,
635
640
(
1974
).
42.
B. L.
Scheller
and
D. W.
Bousfield
, “
Newtonian drop impact with a solid surface
,”
AIChE J.
41
,
1357
1367
(
1995
).
You do not currently have access to this content.