We study the rising motion of small bubbles that undergo contraction, expansion, or oscillation in a shear-thinning fluid. We model the non-Newtonian response of the fluid using the Carreau-Yasuda constitutive equation, under the assumptions that the inertia of the fluid and the bubble is negligible and that the bubble remains spherical. These assumptions imply that the rising velocity of the bubble is instantaneously proportional to the buoyancy force, with the proportionality constant given by the inverse of the friction coefficient. Instead of computing the rising velocity for a particular radial dynamics of the bubble, we evaluate its friction coefficient as a function of the rheological parameters and of the instantaneous expansion/contraction rate. To compute the friction coefficient, we impose a translational motion and we linearize the governing equations around the expansion/contraction dynamics of the bubble, which we solve using a perturbation expansion along with the finite element method. Our results show that the radial motion of the bubble reduces the viscosity of the surrounding fluid and may thus markedly decrease the friction coefficient of the bubble. We use the friction coefficient to compute the average rise velocity of a bubble with periodic variations of its radius, which we find to be strongly increased by the radial pulsations. Finally, we compare our predictions with the experiments performed by Iwata et al. [“Pressure-oscillation defoaming for viscoelastic fluid,” J. Non-Newtonian Fluid Mech. 151(1-3), 30–37 (2008)], who found that the rise velocity of bubbles that undergo radial pulsations is increased by orders of magnitude compared to the case of bubbles that do not pulsate. Our results shed light on the mechanism responsible for enhanced bubble release in shear-thinning fluids, which has implications for bubble removal from complex fluids.

1.
N.
Kantarci
,
F.
Borak
, and
K. O.
Ulgen
, “
Bubble column reactors
,”
Process Biochem.
40
(
7
),
2263
2283
(
2005
).
2.
E.
Kumacheva
and
P.
Garstecki
,
Microfluidic Reactors for Polymer Particles
(
John Wiley & Sons
,
2011
).
3.
G.
D’Avino
,
F.
Greco
, and
P. L.
Maffettone
, “
Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices
,”
Annu. Rev. Fluid Mech.
49
,
341
360
(
2017
).
4.
J.
Solomon
,
T. P.
Elson
,
A. W.
Nienow
, and
G. W.
Pace
, “
Cavern sizes in agitated fluids with a yield stress
,”
Chem. Eng. Commun.
11
(
1-3
),
143
164
(
1981
).
5.
A. D.
Mazzeo
,
M. E.
Lustrino
, and
D. E.
Hardt
, “
Bubble removal in centrifugal casting: Combined effects of buoyancy and diffusion
,”
Polym. Eng. Sci.
52
(
1
),
80
90
(
2012
).
6.
A.
Bonett
and
D.
Pafitis
, “
Getting to the root of gas migration
,”
Oilfield Rev.
8
(
1
),
36
49
(
1996
).
7.
T. J.
Lin
, “
Mechanisms and control of gas bubble formation in cosmetics
,”
J. Soc. Cosmet. Chem.
22
(
6
),
323
337
(
1970
).
8.
M. J.
Jensen
,
G.
Goranović
, and
H.
Bruus
, “
The clogging pressure of bubbles in hydrophilic microchannel contractions
,”
J. Micromech. Microeng.
14
(
7
),
876
(
2004
).
9.
S. B.
Pillapakkam
,
P.
Singh
,
D.
Blackmore
, and
N.
Aubry
, “
Transient and steady state of a rising bubble in a viscoelastic fluid
,”
J. Fluid Mech.
589
,
215
252
(
2007
).
10.
W. F.
Lopez
,
M. F.
Naccache
, and
P. R.
de Souza Mendes
, “
Rising bubbles in yield-stress materials
,”
J. Rheol.
62
(
1
),
209
219
(
2018
).
11.
G.
Astarita
and
G.
Apuzzo
, “
Motion of gas bubbles in non-Newtonian liquids
,”
AIChE J.
11
(
5
),
815
820
(
1965
).
12.
C.
Pilz
and
G.
Brenn
, “
On the critical bubble volume at the rise velocity jump discontinuity in viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
145
(
2-3
),
124
138
(
2007
).
13.
O.
Hassager
, “
Negative wake behind bubbles in non-Newtonian liquids
,”
Nature
279
(
5712
),
402
(
1979
).
14.
R.
Zenit
and
J. J.
Feng
, “
Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids
,”
Annu. Rev. Fluid Mech.
50
,
505
(
2018
).
15.
D.
Fraggedakis
,
M.
Pavlidis
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
On the velocity discontinuity at a critical volume of a bubble rising in a viscoelastic fluid
,”
J. Fluid Mech.
789
,
310
346
(
2016
).
16.
S.
Iwata
,
Y.
Yamada
,
T.
Takashima
, and
H.
Mori
, “
Pressure-oscillation defoaming for viscoelastic fluid
,”
J. Non-Newtonian Fluid Mech.
151
(
1-3
),
30
37
(
2008
).
17.
S.
Iwata
,
T.
Takahashi
,
T.
Onuma
,
R.
Nagumo
, and
H.
Mori
, “
Local flow around a tiny bubble under a pressure-oscillation field in a viscoelastic worm-like micellar solution
,”
J. Non-Newtonian Fluid Mech.
263
,
24
32
(
2019
).
18.
S.
Stein
and
H.
Buggisch
, “
Rise of pulsating bubbles in fluids with a yield stress
,”
Z. Angew. Math. Mech.
80
(
11-12
),
827
834
(
2000
).
19.
N. A.
Pelekasis
,
A.
Gaki
,
A.
Doinikov
, and
J. A.
Tsamopoulos
, “
Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers
,”
J. Fluid Mech.
500
,
313
347
(
2004
).
20.
L.
Jiao
,
T.
Kunugi
,
F. C.
Li
, and
Z.
Kawara
, “
Bubble removal in viscoelastic solution by ultrasonic vibration
,”
AIP Conf. Proc.
1547
,
294
302
(
2013
).
21.
G.
Karapetsas
,
D.
Photeinos
,
Y.
Dimakopoulos
, and
J.
Tsamopoulos
, “
Dynamics and motion of a gas bubble in a viscoplastic medium under acoustic excitation
,”
J. Fluid Mech.
865
,
381
413
(
2019
).
22.
M.
De Corato
,
B.
Saint-Michel
,
G.
Makrigiorgos
,
Y.
Dimakopoulos
,
J.
Tsamopoulos
, and
V.
Garbin
, “
Oscillations of small bubbles and medium yielding in elastoviscoplastic fluids
,”
Phys. Rev. Fluids
4
,
073301
(
2019
).
23.
B.
Dollet
,
P.
Marmottant
, and
V.
Garbin
, “
Bubble dynamics in soft and biological matter
,”
Annu. Rev. Fluid Mech.
51
,
331
355
(
2019
).
24.
Y.
Hu
,
X.
Zhang
, and
W.
Wang
, “
Boundary conditions at the liquid- liquid interface in the presence of surfactants
,”
Langmuir
26
(
13
),
10693
10702
(
2010
).
25.
A.
Vidal
and
L.
Botto
, “
Slip flow past a gas–liquid interface with embedded solid particles
,”
J. Fluid Mech.
813
,
152
174
(
2017
).
26.
V. G.
Levich
,
Physicochemical Hydrodynamics
(
Prentice-Hall, Inc.
,
1962
).
27.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science and Business Media
,
2012
), Vol. 1.
28.
D.
Rings
,
R.
Schachoff
,
M.
Selmke
,
F.
Cichos
, and
K.
Kroy
, “
Hot Brownian motion
,”
Phys. Rev. Lett.
105
(
9
),
090604
(
2010
).
29.
D.
Rings
,
M.
Selmke
,
F.
Cichos
, and
K.
Kroy
, “
Theory of hot Brownian motion
,”
Soft Matter
7
(
7
),
3441
3452
(
2011
).
30.
N.
Oppenheimer
,
S.
Navardi
, and
H. A.
Stone
, “
Motion of a hot particle in viscous fluids
,”
Phys. Rev. Fluids
1
(
1
),
014001
(
2016
).
31.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics: Principles and Selected Applications
(
Courier Corporation
,
2013
).
32.
L. G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
2007
), Vol. 7.
33.
J. R.
Vélez-Cordero
,
D.
Sámano
,
P.
Yue
,
J. J.
Feng
, and
R.
Zenit
, “
Hydrodynamic interaction between a pair of bubbles ascending in shear-thinning inelastic fluids
,”
J. Non-Newtonian Fluid Mech.
166
(
1-2
),
118
132
(
2011
).
34.
J. R.
Vélez-Cordero
and
R.
Zenit
, “
Bubble cluster formation in shear-thinning inelastic bubbly columns
,”
J. Non-Newtonian Fluid Mech.
166
(
1-2
),
32
41
(
2011
).
35.
E.
Zana
and
L. G.
Leal
, “
The dynamics and dissolution of gas bubbles in a viscoelastic fluid
,”
Int. J. Multiphase Flow
4
(
3
),
237
262
(
1978
).
You do not currently have access to this content.