Intermolecular interactions are responsible for the macroscopic properties of materials. Self-assembled micelles of ionic surfactants in the presence of salt are a result of the balance between hydrophobic-hydrophilic and ionic forces. For example, sodium salicylate (NaSal) undoubtedly offers a powerful means of increasing the viscoelasticity of hexadecyl trimethylammonium bromide (CTAB) solutions by orders of magnitude, which results from the formation of wormlike micelles (WLMs). The efficiency of this additive relies on its ability to integrate and alter the repulsive interactions governing CTAB micelles. Consequently, small modifications in the molecular structure of NaSal influences the nature of these interactions. Nevertheless, the full potential of formulation for tailoring the system’s viscoelasticity has yet to be unleashed. Herein, we investigate a series of structurally similar molecules varying in terms of geometry and size. The depth and molecular orientation of their insertion into the micellar core were monitored by proton nuclear magnetic resonance (1H-NMR) and correlated with the corresponding viscoelastic response. After detailed observation of the impact of molecular interactions on zero-shear viscosity η0, we discuss it in terms of the effective packing parameter (PPeff). All the investigated additives increased PPeff, triggering anisotropic micellar growth toward WLMs. The simplicity of our approach is attractive for predicting and controlling the viscoelastic properties of WLM solutions from an intermolecular level.

1.
J. N.
Israelachvili
,
D. J.
Mitchell
, and
B. W.
Ninham
, “
Theory of self-assembly of lipid bilayers and vesicles
,”
Biochim. Biophys. Acta
470
,
185
201
(
1977
).
2.
V.
Lutz-Bueno
,
S.
Isabettini
,
F.
Walker
,
S.
Kuster
,
M.
Liebi
, and
P.
Fischer
, “
Ionic micelles and aromatic additives: A closer look at the molecular packing parameter
,”
Phys. Chem. Chem. Phys.
19
,
21869
21877
(
2017
).
3.
J. C.
Ericksson
and
G.
Gillberg
, “
NMR-studies of the solubilization of aromatic compounds in cetyltrimethylammonium bromide solution. II
,”
Acta Chem. Scand.
20
,
2019
2027
(
1966
).
4.
C.
Manohar
,
U. R. K.
Rao
,
B. S.
Valaulikar
, and
R. M.
Lyer
, “
On the origin of viscoelasticity in micellar solutions of cetyltrimethylammonium bromide and sodium salicylate
,”
J. Chem. Soc.
1300
,
379
(
1986
).
5.
U. R. K.
Rao
,
C.
Manohar
,
B. S.
Valaulikar
, and
R. M.
Iyer
, “
Micellar chain model for the origin of the viscoelasticity in dilute surfactant solutions
,”
J. Phys. Chem.
91
,
3286
3291
(
1987
).
6.
A. R.
Rakitin
and
G. R.
Pack
, “
Necessity of aromatic carboxylate anions to be planar to induce growth of cationic micelles
,”
Langmuir
21
,
837
840
(
2005
).
7.
V.
Hartmann
and
R.
Cressely
, “
Occurrence of shear thickening in aqueous micellar solutions of CTAB with some added organic counterions
,”
Colloid Polym. Sci.
276
,
169
175
(
1998
).
8.
V.
Lutz-Bueno
,
R.
Pasquino
,
M.
Liebi
,
J.
Kohlbrecher
, and
P.
Fischer
, “
Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: Influence of surfactant headgroup structure and its counterion
,”
Langmuir
32
,
4239
4250
(
2016
).
9.
S.
Ezrahi
,
E.
Tuval
, and
A.
Aserin
, “
Properties, main applications and perspectives of worm micelles
,”
Adv. Colloid Interface Sci.
128-130
,
77
102
(
2006
).
10.
B. C.
Smith
,
L.
Cou
,
B.
Lu
, and
J. L.
Zakin
, “
Effect of counterion structure on flow birefringence and drag reduction behavior of quaternary ammonium salt cationic surfactants
,” in
Structure and Flow in Surfactant Solutions
(
American Chemical Society
,
1994
), pp.
370
379
.
11.
T. H.
Ito
,
P. C. M. L.
Miranda
,
N. H.
Morgon
,
G.
Heerdt
, and
C.
Dreiss
, “
Molecular variations in aromatic cosolutes: Critical role in the rheology of cationic wormlike micelles
,”
Langmuir
30
,
11535
11542
(
2014
).
12.
L. S.
Wan
, “
Interaction of substituted benzoic acids with cationic surfactants
,”
J. Pharm. Sci.
55
,
1395
1399
(
1966
).
13.
T.
Shikata
,
H.
Hirata
, and
T.
Kotaka
, “
Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions
,”
Langmuir
4
,
354
359
(
1988
).
14.
H.
Rehage
and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mol. Phys.
74
,
933
973
(
1991
).
15.
Z.
Lin
,
J. J.
Cai
,
L. E.
Scriven
, and
H. T.
Davis
, “
Spherical-to-wormlike micelle transition in CTAB solutions
,”
J. Phys. Chem.
98
,
5984
5993
(
1994
).
16.
T. S.
Davies
,
A. M.
Ketner
, and
S. R.
Raghavan
, “
Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating
,”
J. Am. Chem. Soc.
128
,
6669
6675
(
2006
).
17.
Y.
Zheng
,
Z.
Lin
,
J. L.
Zakin
,
Y.
Talmon
,
H. T.
Davis
, and
L. E.
Scriven
, “
Cryo-TEM imaging the flow-induced transition from vesicles to threadlike micelles
,”
J. Phys. Chem. B
104
,
5263
5271
(
2000
).
18.
K.
Horbaschek
,
H.
Hoffmann
, and
C.
Thunig
, “
Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate
,”
J. Colloid Interface Sci.
206
,
439
456
(
1998
).
19.
S.
Mishra
,
B.
Mishra
,
S.
Samant
,
J.
Narayanan
, and
C.
Manohar
, “
Charge-induced nematic-isotropic transition in mixed surfactant solutions
,”
Langmuir
9
,
2804
2807
(
1993
).
20.
V.
Agarwal
,
M.
Singh
,
G.
McPherson
,
V.
John
, and
A.
Bose
, “
Microstructure evolution in aqueous solutions of cetyl trimethylammonium bromide (CTAB) and phenol derivatives
,”
Colloids Surf., A
281
,
246
253
(
2006
).
You do not currently have access to this content.