The main objective of this work is to comprehensively provide a fundamental understanding of the entire process of the flame-pressure wave interactions with end-gas autoignition and detonation development in a confined chamber by two-dimensional numerical simulations with a stoichiometric hydrogen/air mixture. The flame dynamics, pressure wave propagation, and its structure evolution, together with the mechanism of autoignition and detonation development in the end gas, are analyzed in detail. Six stages, including spherical flame, finger flame, flame with its skirt touching the sidewalls, flame-pressure wave interactions, end-gas autoignition induced by the flame-pressure wave interactions, and detonation development, are observed for the flame development in the confined space. The results demonstrate that the flame-pressure wave multi-interactions result in violent oscillations of the flame shape and speed. Three stages of flame shape evolution during each interaction, backward propagation of the flame front, stretch of the flame front at the boundary layer, and formation of the tulip flame, are captured. A new mechanism in terms of combined effects of the viscous boundary layer and pressure waves is provided for the formation of the tulip flame. It is also found that the velocity distributions in the boundary layer show the trend of increase first and then decrease after the pressure waves pass the fields twice in the opposite directions. The autoignition occurrence and detonation initiation at different positions and different moments in the end-gas region are analyzed. It is indicated that the nonuniform temperature distribution induced by the reflections of pressure waves and the specific pressure wave structures can be responsible for this phenomenon.

1.
V.
Akkerman
and
D.
Valiev
, “
Moderation of flame acceleration in obstructed cylindrical pipes due to gas compression
,”
Phys. Fluids
30
,
106101
(
2018
).
2.
K.
Bioche
,
L.
Vervisch
, and
G.
Ribert
, “
Premixed flame–wall interaction in a narrow channel: Impact of wall thermal conductivity and heat losses
,”
J. Fluid Mech.
856
,
5
(
2018
).
3.
V. N.
Gamezo
,
T.
Ogawa
, and
E. S.
Oran
, “
Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing
,”
Combust. Flame
155
,
302
(
2008
).
4.
A.
Chinnayya
,
A.
Hadjadj
, and
D.
Ngomo
, “
Computational study of detonation wave propagation in narrow channels
,”
Phys. Fluids
25
,
036101
(
2013
).
5.
W.
Han
,
Y.
Gao
,
C.
Wang
, and
C. K.
Law
, “
Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space
,”
Phys. Fluids
27
,
106101
(
2015
).
6.
M.-h.
Wu
,
M. P.
Burke
,
S. F.
Son
, and
R. A.
Yetter
, “
Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes
,”
Proc. Combust. Inst.
31
,
2429
(
2007
).
7.
M.
Reynaud
,
F.
Virot
, and
A.
Chinnayya
, “
A computational study of the interaction of gaseous detonations with a compressible layer
,”
Phys. Fluids
29
,
056101
(
2017
).
8.
M. A.
Liberman
,
M.
Kuznetsov
,
A.
Ivanov
, and
I.
Matsukov
, “
Formation of the preheated zone ahead of a propagating flame and the mechanism underlying the deflagration-to-detonation transition
,”
Phys. Lett. A
373
,
501
(
2009
).
9.
M. A.
Liberman
,
M. F.
Ivanov
,
A. D.
Kiverin
,
M. S.
Kuznetsov
,
A. A.
Chukalovsky
, and
T. V.
Rakhimova
, “
Deflagration-to-detonation transition in highly reactive combustible mixtures
,”
Acta Astronaut.
67
,
688
(
2010
).
10.
Y.
Qi
,
Z.
Wang
,
J.
Wang
, and
X.
He
, “
Effects of thermodynamic conditions on the end gas combustion mode associated with engine knock
,”
Combust. Flame
162
,
4119
(
2015
).
11.
J.
Rudloff
,
J. M.
Zaccardi
,
S.
Richard
, and
J. M.
Anderlohr
, “
Analysis of pre-ignition in highly charged SI engines: Emphasis on the auto-ignition mode
,”
Proc. Combust. Inst.
34
,
2959
(
2013
).
12.
A.
Robert
,
S.
Richard
,
O.
Colin
, and
T.
Poinsot
, “
LES study of deflagration to detonation mechanisms in a downsized spark ignition engine
,”
Combust. Flame
162
,
2788
(
2015
).
13.
H.
Wei
,
D.
Gao
,
L.
Zhou
,
D.
Feng
, and
R.
Chen
, “
Different combustion modes caused by flame-shock interactions in a confined chamber with a perforated plate
,”
Combust. Flame
178
,
277
(
2017
).
14.
H.
Wei
,
J.
Zhao
,
L.
Zhou
,
D.
Gao
, and
Z.
Xu
, “
Effects of the equivalence ratio on turbulent flame–shock interactions in a confined space
,”
Combust. Flame
186
,
247
(
2017
).
15.
Z.
Wang
,
H.
Liu
, and
R. D.
Reitz
, “
Knocking combustion in spark-ignition engines
,”
Prog. Energy Combust. Sci.
61
,
78
(
2017
).
16.
G. H.
Markstein
, “
A shock-tube study of flame front-pressure wave interaction
,”
Symp. (Int.) Combust.
6
,
387
(
1956
).
17.
G.
Searby
, “
Acoustic instability in premixed flames
,”
Combust. Sci. Technol.
81
,
221
(
1992
).
18.
V.
Bychkov
, “
Analytical scalings for flame interaction with sound waves
,”
Phys. Fluids
11
,
3168
(
1999
).
19.
V.
Bychkov
, “
Stabilization of the hydrodynamic flame instability by a weak shock
,”
Phys. Fluids
10
,
2669
(
1998
).
20.
A.
Petchenko
,
V.
Bychkov
,
V.
Akkerman
, and
L.
Eriksson
, “
Flame–sound interaction in tubes with nonslip walls
,”
Combust. Flame
149
,
418
(
2007
).
21.
A.
Petchenko
,
V.
Bychkov
,
V.
Akkerman
, and
L. E.
Eriksson
, “
Violent folding of a flame front in a flame-acoustic resonance
,”
Phys. Rev. Lett.
97
,
164501
(
2006
).
22.
V.
Akkerman
and
C. K.
Law
, “
Effect of acoustic coupling on power-law flame acceleration in spherical confinement
,”
Phys. Fluids
25
,
013602
(
2013
).
23.
G. S. C.
Clanet
, “
On the ‘tulip flame’ phenomenon
,”
Combust. Flame
105
,
225
(
1996
).
24.
H.
Xiao
,
R. W.
Houim
, and
E. S.
Oran
, “
Formation and evolution of distorted tulip flames
,”
Combust. Flame
162
,
4084
(
2015
).
25.
H.
Xiao
,
R. W.
Houim
, and
E. S.
Oran
, “
Effects of pressure waves on the stability of flames propagating in tubes
,”
Proc. Combust. Inst.
36
,
1577
(
2017
).
26.
H.
Xiao
,
D.
Makarov
,
J.
Sun
, and
V.
Molkov
, “
Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct
,”
Combust. Flame
159
,
1523
(
2012
).
27.
G.
Thomas
,
R.
Bambrey
, and
C.
Brown
, “
Experimental observations of flame acceleration and transition to detonation following shock-flame interaction
,”
Combust. Theory Modell.
5
,
573
(
2001
).
28.
Y.-J.
Zhu
,
G.
Dong
,
Y.-X.
Liu
,
B.-C.
Fan
, and
H.
Jiang
, “
Effect of chemical reactivity on the detonation initiation in shock accelerated flow in a confined space
,”
Acta Mech. Sin.
29
,
54
(
2013
).
29.
Y.
Zhu
,
G.
Dong
, and
Y.
Liu
, “
Three-dimensional numerical simulations of spherical flame evolutions in shock and reshock accelerated flows
,”
Combust. Sci. Technol.
185
,
1415
(
2013
).
30.
H. H.
Teng
,
Z. L.
Jiang
, and
Z. M.
Hu
, “
Detonation initiation developing from the Richtmyer–Meshkov instability
,”
Acta Mech. Sin.
23
,
343
(
2007
).
31.
Y. B.
Zeldovich
, “
Regime classification of an exothermic reaction with nonuniform initial conditions
,”
Combust. Flame
39
,
211
(
1980
).
32.
L.
Bates
,
D.
Bradley
,
G.
Paczko
, and
N.
Peters
, “
Engine hot spots: Modes of auto-ignition and reaction propagation
,”
Combust. Flame
166
,
80
(
2016
).
33.
D.
Bradley
and
G. T.
Kalghatgi
, “
Influence of autoignition delay time characteristics of different fuels on pressure waves and knock in reciprocating engines
,”
Combust. Flame
156
,
2307
(
2009
).
34.
X. J.
Gu
,
D. R.
Emerson
, and
D.
Bradley
, “
Modes of reaction front propagation from hot spots
,”
Combust. Flame
133
,
63
(
2003
).
35.
Z.
Wang
,
Y.
Qi
,
X.
He
,
J.
Wang
,
S.
Shuai
, and
C. K.
Law
, “
Analysis of pre-ignition to super-knock: Hotspot-induced deflagration to detonation
,”
Fuel
144
,
222
(
2015
).
36.
Z.
Wang
,
Y.
Qi
,
H.
Liu
,
P.
Zhang
,
X.
He
, and
J.
Wang
, “
Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder
,”
Shock Waves
26
,
687
(
2016
).
37.
D. G. H.
Wei
,
L.
Zhou
,
J.
Pan
,
K.
Tao
, and
Z.
Pei
, “
Experimental observations of turbulent flame propagation effected by flame acceleration in the end gas of closed combustion chamber
,”
Fuel
180
,
157
(
2016
).
38.
P.
Dai
and
Z.
Chen
, “
Supersonic reaction front propagation initiated by a hot spot in n-heptane/air mixture with multistage ignition
,”
Combust. Flame
162
,
4183
(
2015
).
39.
M. A.
Liberman
,
M. F.
Ivanov
,
O. E.
Peil
,
D. M.
Valiev
, and
L. E.
Eriksson
, “
Numerical modeling of the propagating flame and knock occurrence in spark-ignition engines
,”
Combust. Sci. Technol.
177
,
151
(
2004
).
40.
C.
Qi
,
P.
Dai
,
H.
Yu
, and
Z.
Chen
, “
Different modes of reaction front propagation in n-heptane/air mixture with concentration non-uniformity
,”
Proc. Combust. Inst.
36
,
3633
(
2017
).
41.
H.
Terashima
and
M.
Koshi
, “
Mechanisms of strong pressure wave generation in end-gas autoignition during knocking combustion
,”
Combust. Flame
162
,
1944
(
2015
).
42.
H.
Terashima
,
A.
Matsugi
, and
M.
Koshi
, “
Origin and reactivity of hot-spots in end-gas autoignition with effects of negative temperature coefficients: Relevance to pressure wave developments
,”
Combust. Flame
184
,
324
(
2017
).
43.
H.
Wei
,
C.
Chen
,
H.
Zhou
,
W.
Zhao
, and
Z.
Ren
, “
Effect of turbulent mixing on the end gas auto-ignition of n-heptane/air mixtures under IC engine-relevant conditions
,”
Combust. Flame
174
,
25
(
2016
).
44.
H.
Yu
and
Z.
Chen
, “
End-gas autoignition and detonation development in a closed chamber
,”
Combust. Flame
162
,
4102
(
2015
).
45.
W.
Han
,
Y.
Gao
, and
C. K.
Law
, “
Flame acceleration and deflagration-to-detonation transition in micro-and macro-channels: An integrated mechanistic study
,”
Combust. Flame
176
,
285
(
2017
).
46.
V. N.
Gamezo
and
E. S.
Oran
, “
Flame acceleration in narrow channels: Applications for micropropulsion in low-gravity environments
,”
AIAA J.
44
,
329
(
2006
).
47.
CHEMKIN-PRO 10131, Reaction Design, San Diego,
2013
.
48.
J.
Li
,
Z.
Zhao
,
A.
Kazakov
, and
F. L.
Dryer
, “
An updated comprehensive kinetic model of hydrogen combustion
,”
Int. J. Chem. Kinet.
36
,
566
(
2004
).
49.
J. D.
Ott
,
E. S.
Oran
, and
J. D.
Anderson
, “
A mechanism for flame acceleration in narrow tubes
,”
AIAA J.
41
,
1391
(
2003
).
50.
J.
Daou
and
M.
Matalon
, “
Influence of conductive heat-losses on the propagation of premixed flames in channels
,”
Combust. Flame
128
,
321
(
2002
).
51.
L.
Kagan
and
G.
Sivashinsky
, “
On the transition from deflagration to detonation in narrow tubes
,”
Flow, Turbul. Combust.
84
,
423
(
2010
).
52.
R.
Kee
,
F.
Rupley
, and
J.
Miller
, “
CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics
,” Document No. SAND-89-8009,
1989
.
53.
R.
Deiterding
, “
High-resolution numerical simulation and analysis of Mach reflection structures in detonation waves in low-pressure H2–O2–Ar mixtures: A summary of results obtained with the adaptive mesh refinement framework AMROC
,”
J. Combust.
2011
,
1
.
54.
R.
Deiterding
, “
A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains
,”
Comput. Struct.
87
,
769
(
2009
).
55.
R.
Deiterding
, “
Parallel adaptive simulation of multi-dimensional detonation structures
,” Ph.D. dissertation (
Brandenburgische Technische Universität Cottbus
,
2003
).
56.
J. L.
Ziegler
,
R.
Deiterding
,
J. E.
Shepherd
, and
D. I.
Pullin
, “
An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry
,”
J. Comput. Phys.
230
,
7598
(
2011
).
57.
P. N.
Brown
,
G. D.
Byrne
, and
A. C.
Hindmarsh
, “
VODE: A Variable coefficient ODE solver
,”
SIAM J. Sci. Stat. Comput.
10
,
1038
(
1989
).
58.
X.
Cai
,
R.
Deiterding
,
J.
Liang
, and
Y.
Mahmoudi
, “
Adaptive simulations of viscous detonations initiated by a hot jet using a high-order hybrid WENO–CD scheme
,”
Proc. Combust. Inst.
36
,
2725
(
2017
).
59.
X.
Cai
,
J.
Liang
,
R.
Deiterding
,
Y.
Mahmoudi
, and
M.
Sun
, “
Experimental and numerical investigations on propagating modes of detonations: Detonation wave/boundary layer interaction
,”
Combust. Flame
190
,
201
(
2018
).
60.
X.
Cai
,
R.
Deiterding
,
J.
Liang
,
M.
Sun
, and
Y.
Mahmoudi
, “
Diffusion and mixing effects in hot jet initiation and propagation of hydrogen detonations
,”
J. Fluid Mech.
836
,
324
(
2017
).
61.
H.
Peng
,
Y.
Huang
,
R.
Deiterding
,
Z.
Luan
,
F.
Xing
, and
Y.
You
, “
Effects of jet in crossflow on flame acceleration and deflagration to detonation transition in methane–oxygen mixture
,”
Combust. Flame
198
,
69
(
2018
).
62.
Y.
Wang
,
W.
Han
,
R.
Deiterding
, and
Z.
Chen
, “
Effects of disturbance on detonation initiation in H2/O2/N2 mixture
,”
Phys. Rev. Fluids
3
,
123201
(
2018
).
63.
V.
Bychkov
,
V.
Akkerman
,
G.
Fru
,
A.
Petchenko
, and
L.-E.
Eriksson
, “
Flame acceleration in the early stages of burning in tubes
,”
Combust. Flame
150
,
263
(
2007
).
64.
V.
Bychkov
,
M. A.
Liberman
, and
L.
Eriksson
, “
Propagation of curved stationary flames in tubes
,”
Phys. Rev. E
54
,
3713
(
1996
).
65.
D.
Dunn-Rankin
and
R. F.
Sawyer
, “
The interaction of a laminar flame with its self-cenerated flow during constant volume combustion
,” in
The 10th ICDERS
,
1985
.
66.
D.
Dunn-Rankin
and
R. F.
Sawyer
, “
Tulip flames: Changes in shape of premixed flames propagating in closed tubes
,”
Exp. Fluids
24
,
130
(
1998
).
67.
M.
Matalon
and
P.
Metzener
, “
The propagation of premixed flames in closed tubes
,”
J. Fluid Mech.
336
,
331
(
1997
).
68.
C.
Wang
,
Y.
Zhao
, and
W.
Han
, “
Effect of heat-loss boundary on flame acceleration and deflagration-to-detonation transition in narrow channels
,”
Combust. Sci. Technol.
189
,
1605
(
2017
).
69.
M.
Pöschl
and
T.
Sattelmayer
, “
Influence of temperature inhomogeneities on knocking combustion
,”
Combust. Flame
153
,
562
(
2008
).
70.
C. S.
Yoo
,
T.
Lu
,
J. H.
Chen
, and
C. K.
Law
, “
Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study
,”
Combust. Flame
158
,
1727
(
2011
).
71.
J. F.
Griffith
,
J. P.
MacNamara
,
C. G. W.
Sheppard
,
D. A.
Turton
, and
B. J.
Whitaker
, “
The relationship of knock during controlled autoignition to temperature inhomogeneities and fuel reactivity
,”
Fuel
81
,
2219
(
2002
).
72.
M. A.
Liberman
,
M. F.
Ivanov
,
D. M.
Valiev
, and
L. E.
Eriksson
, “
Hot spot formation by the propagating flame and the influence of Egr on knock occurrence in Si engines
,”
Combust. Sci. Technol.
178
,
1613
(
2006
).
73.
H.
Wei
,
J.
Yu
,
L.
Zhou
,
W.
Zhao
, and
C.
Chen
, “
The LES and LEM study of end-gas auto-ignition mechanism in a downsized spark ignition engine: Effect of turbulence
,”
Combust. Sci. Technol.
(published online,
2018
).
74.
T.
Zhang
,
W.
Sun
,
L.
Wang
, and
Y.
Ju
, “
Effects of low-temperature chemistry and turbulent transport on knocking formation for stratified dimethyl ether/air mixtures
,”
Combust. Flame
200
,
342
(
2019
).
75.
L.
Chen
,
H.
Wei
,
C.
Chen
,
D.
Feng
,
L.
Zhou
, and
J.
Pan
, “
Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine
,”
Energy
166
,
318
(
2019
).
You do not currently have access to this content.