We report an experimental study on suspensions of solid particles in a viscoelastic polymer matrix. A commercial entangled poly(ε-caprolactone) was used as the suspending fluid. Noncolloidal solid spheres (diameter = 15 μm) made of polymethylmethacrylate were dispersed in the polymer via a solvent casting method. The volume fraction of the spheres was varied from 5% to 30%, thus allowing to explore both dilute and concentrated regimes. Electron scanning microscopy demonstrated homogeneous dispersion of the spheres in the matrix. We measured the rheological properties of the suspensions both in linear and nonlinear regimes with both dynamic and transient tests. The experimental results demonstrate the reinforcement effect of the particles. Both viscous and elastic moduli increase as the concentration of the particles is increased. The results show good agreement with available theories, simulations, and previous experimental data. In particular, the second order parameter of the quadratic equation that describes the dependence of the shear viscosity of the suspension upon the volume fraction of particles is in agreement with the predicted value found by Batchelor [G. K. Batchelor and J. T. Green, “The hydrodynamic interaction of two small freely-moving spheres in a linear flow field,” J. Fluid Mech. 56, 375–400 (1972); G. K. Batchelor and J. T. Green, “The determination of the bulk stress in a suspension of spherical particles to order c2,” J. Fluid Mech. 56, 401–427 (1972); and G. K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles,” J. Fluid Mech. 83, 97–117 (1977)]. We probe experimentally that the linear rheological behavior of suspensions of particles in viscoelastic fluids is the same as for Newtonian fluids.

1.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
, Cambridge Series in Chemical Engineering (
Cambridge University Press
,
2011
).
2.
C. W.
Macosko
,
Rheology: Principles, Measurements and Applications
(
Wiley-VCH
,
1994
), p.
568
.
3.
R.
Pasquino
,
G.
D’Avino
,
P. L.
Maffettone
,
F.
Greco
, and
N.
Grizzuti
, “
Migration and chaining of noncolloidal spheres suspended in a sheared viscoelastic medium. Experiments and numerical simulations
,”
J. Non-Newtonian Fluid Mech.
203
,
1
8
(
2014
).
4.
M. M.
Denn
and
J. F.
Morris
, “
Rheology of non-Brownian suspensions
,”
Annu. Rev. Chem. Biomol. Eng.
5
,
203
228
(
2014
).
5.
A.
Einstein
, “
Elementare betrachtungen über die thermische molekularbewegung in festen körpern
,”
Ann. Phys.
340
,
679
694
(
1911
).
6.
O.
Bächle
, “
The viscosity of latex and of latex mixtures
,”
Rubber Chem. Technol.
10
,
675
687
(
1937
).
7.
C. M.
Blow
, “
A study of the viscosity of rubber latex
,”
Trans. Faraday Soc.
25
,
458
462
(
1929
).
8.
R.
Eirich
,
M.
Bunzl
, and
H.
Margaretha
, “
Untersuchungen über die viskosität von suspensionen und lösungen. 4. Über die viskosität von kugelsuspensionen
,”
Kolloid-Z.
74
,
276
285
(
1936
).
9.
G. K.
Batchelor
and
J. T.
Green
, “
The hydrodynamic interaction of two small freely-moving spheres in a linear flow field
,”
J. Fluid Mech.
56
,
375
400
(
1972
).
10.
G. K.
Batchelor
and
J. T.
Green
, “
The determination of the bulk stress in a suspension of spherical particles to order c2
,”
J. Fluid Mech.
56
,
401
427
(
1972
).
11.
G. K.
Batchelor
, “
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
,”
J. Fluid Mech.
83
,
97
117
(
1977
).
12.
W. B.
Russel
and
A. P.
Gast
, “
Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows
,”
J. Chem. Phys.
84
,
1815
1826
(
1986
).
13.
B.
Cichocki
and
B. U.
Felderhof
, “
Linear viscoelasticity of semidilute hard-sphere suspensions
,”
Phys. Rev. A
43
,
5405
5411
(
1991
).
14.
B.
Cichocki
and
B. U.
Felderhof
, “
Linear viscoelasticity of colloidal suspensions
,”
Phys. Rev. A
46
,
7723
7732
(
1992
).
15.
R.
Verberg
,
I. M.
de Schepper
, and
E. G. D.
Cohen
, “
Viscosity of colloidal suspensions
,”
Phys. Rev. E
55
,
3143
3158
(
1997
).
16.
C. I.
Mendoza
and
I.
Santamaría-Holek
, “
The rheology of hard sphere suspensions at arbitrary volume fractions: An improved differential viscosity model
,”
J. Chem. Phys.
130
,
044904
(
2009
).
17.
I. R.
Rutgers
, “
Relative viscosity of suspensions of rigid spheres in Newtonian liquids
,”
Rheol. Acta
2
,
202
210
(
1962
).
18.
F. L.
Saunders
, “
Rheological properties of monodisperse latex systems I. Concentration dependence of relative viscosity
,”
J. Colloid Sci.
16
,
13
22
(
1961
).
19.
D. J.
Highgate
and
R. W.
Whorlow
, “
Rheological properties of suspensions of spheres in non-Newtonian media
,”
Rheol. Acta
9
,
569
576
(
1970
).
20.
R.
Pasquino
,
N.
Grizzuti
,
P. L.
Maffettone
, and
F.
Greco
, “
Rheology of dilute and semidilute noncolloidal hard sphere suspensions
,”
J. Rheol.
52
,
1369
1384
(
2008
).
21.
C.-H.
Hsueh
and
P. F.
Becher
, “
Effective viscosity of suspensions of spheres
,”
J. Am. Ceram. Soc.
88
,
1046
1049
(
2005
).
22.
J. G.
Oldroyd
and
A. H.
Wilson
, “
The elastic and viscous properties of emulsions and suspensions
,”
Proc. R. Soc. London, Ser. A
218
,
122
132
(
1953
).
23.
S. J.
Choi
and
W. R.
Schowalter
, “
Rheological properties of nondilute suspensions of deformable particles
,”
Phys. Fluids
18
,
420
427
(
1975
).
24.
J. F.
Palierne
, “
Linear rheology of viscoelastic emulsions with interfacial tension
,”
Rheol. Acta
29
,
204
214
(
1990
).
25.
D.
Graebling
,
R.
Muller
, and
J. F.
Palierne
, “
Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids
,”
Macromolecules
26
,
320
329
(
1993
).
26.
R.
Pal
, “
Complex shear modulus of concentrated suspensions of solid spherical particles
,”
J. Colloid Interface Sci.
245
,
171
177
(
2002
).
27.
G.
D’Avino
,
F.
Greco
,
M. A.
Hulsen
, and
P. L.
Maffettone
, “
Rheology of viscoelastic suspensions of spheres under small and large amplitude oscillatory shear by numerical simulations
,”
J. Rheol.
57
,
813
839
(
2013
).
28.
B. K.
Aral
and
D. M.
Kalyon
, “
Viscoelastic material functions of noncolloidal suspensions with spherical particles
,”
J. Rheol.
41
,
599
620
(
1997
).
29.
D.
Chan
and
R.
Powell
, “
Rheology of suspensions of spherical particles in a Newtonian and a non-Newtonian fluid
,”
J. Non-Newtonian Fluid Mech.
15
,
165
179
(
1984
).
30.
A. J.
Poslinski
,
M. E.
Ryan
,
R. K.
Gupta
,
S. G.
Seshadri
, and
F. J.
Frechette
, “
Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects
,”
J. Rheol.
32
,
703
735
(
1988
).
31.
J.-F.
Le Meins
,
P.
Moldenaers
, and
J.
Mewis
, “
Suspensions in polymer melts. 1. Effect of particle size on the shear flow behavior
,”
Ind. Eng. Chem. Res.
41
,
6297
6304
(
2002
).
32.
B. A.
Haleem
and
P. R.
Nott
, “
Rheology of particle-loaded semi-dilute polymer solutions
,”
J. Rheol.
53
,
383
400
(
2009
).
33.
D. L.
Faulkner
and
L. R.
Schmidt
, “
Glass bead-filled polypropylene part I: Rheological and mechanical properties
,”
Polym. Eng. Sci.
17
,
657
665
(
1977
).
34.
S. E.
Mall-Gleissle
,
H. B.
Wolfgang Gleissle
, and
G. H.
McKinley
, “
The normal stress behaviour of suspensions with viscoelastic matrix fluids
,”
Rheol. Acta
41
,
61
76
(
2002
).
35.
R. I.
Tanner
, “
Non-colloidal suspensions: Relations between theory and experiment in shearing flows
,”
J. Non-Newtonian Fluid Mech.
222
,
18
23
(
2015
).
36.
A.
Sierou
and
J. F.
Brady
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
146
(
2001
).
37.
H. M.
Schaink
,
J. J. M.
Slot
,
R. J. J.
Jongschaap
, and
J.
Mellema
, “
The rheology of systems containing rigid spheres suspended in both viscous and viscoelastic media, studied by Stokesian dynamics simulations
,”
J. Rheol.
44
,
473
498
(
2000
).
38.
S.
Costanzo
,
Q.
Huang
,
G.
Ianniruberto
,
G.
Marrucci
,
O.
Hassager
, and
D.
Vlassopoulos
, “
Shear and extensional rheology of polystyrene melts and solutions with the same number of entanglements
,”
Macromolecules
49
,
3925
3935
(
2016
).
39.
S.
Costanzo
,
G.
Ianniruberto
,
G.
Marrucci
, and
D.
Vlassopoulos
, “
Measuring and assessing first and second normal stress differences of polymeric fluids with a modular cone-partitioned plate geometry
,”
Rheol. Acta
57
,
363
376
(
2018
).
40.
H.
See
,
P.
Jiang
, and
N.
Phan-Thien
, “
Concentration dependence of the linear viscoelastic properties of particle suspensions
,”
Rheol. Acta
39
,
131
137
(
2000
).
41.
S. I.
Stefano Acierno
,
E.
Di Maio
, and
N.
Grizzuti
, “
Structure development during crystallization of polycaprolactone
,”
Rheol. Acta
45
,
387
392
(
2006
).
42.
W. P.
Cox
and
E. H.
Merz
, “
Correlation of dynamic and steady flow viscosities
,”
J. Polym. Sci.
28
,
619
622
(
1958
).
43.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworth-Heinemann
,
1988
), p.
380
.
44.
C.
Datt
and
G. J.
Elfring
, “
Dynamics and rheology of particles in shear-thinning fluids
,” in
XVIIIth International Workshop on Numerical Methods for Non-Newtonian Flows, June 12–15, 2017, Vancouver, Canada
[
J. Non-Newtonian Fluid Mech.
262
,
107
114
(
2018
)].
You do not currently have access to this content.