We investigate via numerical simulations the settling dynamics of two non-Brownian rigid spheres in a dilute suspension of Brownian rods at low Reynolds numbers. Specifically, this work focuses on how the overall settling dynamics is affected by the coupling between the flow field around the spheres and the orientation of the rods. The Brownian motion introduces a finite relaxation time in the suspending medium which is modeled as a continuum. When the spheres fall along their centerline, the spheres experience two contributions: one Newtonian and a non-Newtonian contribution due to the presence of the Brownian rods. The interactions between the two settling spheres are evaluated as a function of Péclet number (Pe) and the distance between the centers of the spheres. Repulsive interactions are found, and these interactions are affected by Pe and the distance between the centers of the spheres. An analysis of the flow fields highlights the origin of these repulsive interactions in non-Newtonian elongational effects.

1.
S. G.
Advani
, “
Prediction of fiber orientation during processing of short fiber composites
,” Ph.D. thesis (University of Illinois at Urbana-Champaign,
1987
).
2.
A. M.
Ardekani
and
R. H.
Rangel
, “
Numerical investigation of particle-particle and particle-wall collisions in a viscous fluid
,”
J. Fluid Mech.
596
,
437
466
(
2008
).
3.
R. H.
Rangel
,
A. M.
Ardekani
, and
D. D.
Joseph
, “
Two spheres in a free stream of a second-order fluid
,”
Phys. Fluids
20
,
063101
(
2008
).
4.
I.
Bahar
and
B.
Erman
, “
Effect of flow on solutions of rodlike molecules
,”
J. Polym. Sci., Part B: Polym. Phys.
24
,
1361
1371
(
1986
).
5.
G. K.
Batchelor
, “
Slender-body theory for particles of arbitrary cross-section in Stokes flow
,”
J. Fluid Mech.
44
,
419
440
(
1970
).
6.
G. K.
Batchelor
, “
The stress system in a suspension of force-free particles
,”
J. Fluid Mech.
41
,
545
570
(
1970
).
7.
G. K.
Batchelor
, “
Sedimentation in a dilute dispersion of spheres
,”
J. Fluid Mech.
52
,
245
268
(
1972
).
8.
G. K.
Batchelor
, “
Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory
,”
J. Fluid Mech.
119
,
379
408
(
1982
).
9.
G. K.
Batchelor
and
C.-S.
Wen
, “
Sedimentation in a dilute polydisperse system of interacting spheres. Part 2. Numerical results
,”
J. Fluid Mech.
124
,
495
528
(
1982
).
10.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Fluid Mechanics
(
Wiley
,
New York
,
1987
), Vol. 1.
11.
P.
Brunn
, “
The slow motion of a sphere in a second-order fluid
,”
Rheol. Acta
15
,
163
171
(
1976
).
12.
P.
Brunn
, “
Interaction of spheres in a viscoelastic fluid
,”
Rheol. Acta
16
,
461
475
(
1977
).
13.
M. B.
Bush
and
N.
Phan-Thien
, “
Drag force on a sphere in creeping motion through a Carreau model fluid
,”
J. Non-Newtonian Fluid Mech.
16
,
303
313
(
1984
).
14.
E.
Chaparian
,
A.
Wachs
, and
I. A.
Frigaard
, “
Inline motion and hydrodynamic interaction of 2d particles in a viscoplastic fluid
,”
Phys. Fluids
30
(
3
),
033101
(
2018
).
15.
R.
Chhabra
,
Bubbles, Drops, and Particles in Non-Newtonian Fluids
(
CRC Press
,
Boca Raton
,
2007
).
16.
R. P.
Chhabra
,
C.
Tiu
, and
P. H. T.
Uhlherr
, “
Shear-thinning effects in creeping flow about a sphere
,” in
Rheology 2: Fluids
, edited by
G.
Astarita
,
G.
Marucci
, and
L.
Nicolais
(
Springer
,
1980
), pp.
9
16
.
17.
R. P.
Chhabra
,
P. H. T.
Uhlherr
, and
D. V.
Boger
, “
The influence of fluid elasticity on the drag coefficient for creeping flow around a sphere
,”
J. Non-Newtonian Fluid Mech.
6
,
187
199
(
1980
).
18.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic Press
,
New York
,
1978
).
19.
R. G.
Cox
and
H.
Brenner
, “
The rheology of a suspension of particles in a Newtonian fluid
,”
Chem. Eng. Sci.
26
(
1
),
65
93
(
1971
).
20.
C.
Datt
and
G. J.
Elfring
, “
Dynamics and rheology of particles in shear-thinning fluids
,”
J. Non-Newtonian Fluid Mech.
262
,
107
114
(
2018
).
21.
S.
Daugan
,
L.
Talini
,
B.
Herzhaft
, and
C.
Allain
, “
Aggregation of particles settling in shear-thinning fluids
,”
Eur. Phys. J. E
9
(
1
),
55
62
(
2002
).
22.
R. H.
Davis
and
A.
Acrivos
, “
Sedimentation of noncolloidal particles at low Reynolds numbers
,”
Annu. Rev. Fluid Mech.
17
,
91
118
(
1985
).
23.
J. K. G.
Dhont
and
W. J.
Briels
,
Rod-Like Brownian Particles in Shear Flow
(
Wiley-VCH Verlag
,
2006
), pp.
147
283
.
24.
S. M.
Dinh
and
R. C.
Armstrong
, “
A rheological equation of state for semiconcentrated fiber suspensions
,”
J. Rheol.
28
(
3
),
207
227
(
1984
).
25.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of rod-like macromolecules in concentrated solution. Part 1
,”
J. Chem. Soc., Faraday Trans. 2
74
,
560
570
(
1978
).
26.
M.
Doi
and
S. F.
Edwards
, “
Dynamics of rod-like macromolecules in concentrated solution. Part 2
,”
J. Chem. Soc., Faraday Trans. 2
74
,
918
932
(
1978
).
27.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1988
), Vol. 73.
28.
J. L.
Ericksen
, “
Anisotropic fluids
,”
Arch. Ration. Mech. Anal.
4
,
231
237
(
1960
).
29.
J.
Feng
,
P. Y.
Huang
, and
D. D.
Joseph
, “
Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid
,”
J. Non-Newtonian Fluid Mech.
63
,
63
88
(
1996
).
30.
J.
Ferec
,
E.
Abisset-Chavanne
,
G.
Ausias
, and
F.
Chinesta
, “
On the use of interaction tensors to describe and predict rod interactions in rod suspensions
,”
Rheol. Acta
53
(
5-6
),
445
456
(
2014
).
31.
G.
Gheissary
and
B. H. A. A.
Van Den Brule
, “
Unexpected phenomena observed in particle settling in non-Newtonian media
,”
J. Non-Newtonian Fluid Mech.
67
,
1
18
(
1996
).
32.
H.
Giesekus
, “
Elasto-viscous liquids for which all normal stress components are different in stationary layer flow
,”
Rheol. Acta
2
(
1
),
50
62
(
1962
).
33.
D. I.
Graham
and
T. E. R.
Jones
, “
Settling and transport of spherical particles in power-law fluids at finite Reynolds number
,”
J. Non-Newtonian Fluid Mech.
54
,
465
488
(
1994
).
34.
G. L.
Hand
, “
A theory of dilute suspensions
,”
Arch. Ration. Mech. Anal.
7
(
1
),
81
86
(
1961
).
35.
G. L.
Hand
, “
A theory of anisotropic fluids
,”
J. Fluid Mech.
13
(
1
),
33
46
(
1962
).
36.
E. J.
Hinch
and
L. G.
Leal
, “
Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations
,”
J. Fluid Mech.
76
,
187
208
(
1976
).
37.
H. H.
Hu
,
N. A.
Patankar
, and
M. Y.
Zhu
, “
Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique
,”
J. Comput. Phys.
169
,
427
462
(
2001
).
38.
J. H.
Irving
and
J. G.
Kirkwood
, “
The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
39.
D. D.
Joseph
and
J.
Feng
, “
A note on the forces that move particles in a second-order fluid
,”
J. Non-Newtonian Fluid Mech.
64
,
299
302
(
1996
).
40.
D. D.
Joseph
,
Y. J.
Liu
,
M.
Poletto
, and
J.
Feng
, “
Aggregation and dispersion of spheres falling in viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
54
,
45
86
(
1994
).
41.
A. S.
Khair
and
J. F.
Brady
, “
On the motion of two particles translating with equal velocities through a colloidal dispersion
,”
Proc. R. Soc. A
463
,
223
240
(
2007
).
42.
A. R.
Khan
and
J. F.
Richardson
, “
The resistance to motion of a solid sphere in a fluid
,”
Chem. Eng. Commun.
62
,
135
150
(
1987
).
43.
L. G.
Leal
and
E. J.
Hinch
, “
The effect of weak Brownian rotations on particles in shear flow
,”
J. Fluid Mech.
46
(
4
),
685
703
(
1971
).
44.
L. G.
Leal
and
E. J.
Hinch
, “
Theoretical studies of a suspension of rigid particles affected by Brownian couples
,”
Rheol. Acta
12
(
2
),
127
132
(
1973
).
45.
O.
Levenspiel
and
A.
Haider
, “
Drag coefficient and terminal velocity of spherical and nonspherical particles
,”
Powder Technol.
58
,
63
70
(
1989
).
46.
K.-h.
Lin
,
J. C.
Crocker
,
A. C.
Zeri
, and
A. G.
Yodh
, “
Colloidal interactions in suspensions of rods
,”
Phys. Rev. Lett.
87
(
8
),
088301
(
2001
).
47.
R. A.
Lionberger
and
W. B.
Russel
, “
Effectiveness of nonequilibrium closures for the many body forces in concentrated colloidal dispersions
,”
J. Chem. Phys.
106
,
402
416
(
1997
).
48.
R. A.
Lionberger
and
W. B.
Russel
, “
A Smoluchowski theory with simple approximations for hydrodynamic interactions in concentrated dispersions
,”
J. Rheol.
41
(
2
),
399
425
(
1997
).
49.
G. G.
Lipscomb
 II
,
M. M.
Denn
,
D. U.
Hur
, and
D. V.
Boger
, “
The flow of fiber suspensions in complex geometries
,”
J. Non-Newtonian Fluid Mech.
26
(
3
),
297
325
(
1988
).
50.
I.
MacHač
,
B.
Šiška
, and
L.
MacHačová
, “
Terminal falling velocity of spherical particles moving through a Carreau model fluid
,”
Chem. Eng. Process.: Process Intensif.
39
,
365
369
(
2000
).
51.
Y.
Mao
,
M. E.
Cates
, and
H. N. W.
Lekkerkerker
, “
Depletion force in colloidal systems
,”
Physica A
222
(
1-4
),
10
24
(
1995
).
52.
G.
Marrucci
and
A.
Ciferri
, “
Phase equilibria of rod-like molecules in an extensional flow field
,”
J. Polym. Sci., Polym. Lett. Ed.
15
,
643
648
(
1977
).
53.
J.
Michele
,
R.
Pätzold
, and
R.
Donis
, “
Alignment and aggregation effects in suspensions of spheres in non-Newtonian media
,”
Rheol. Acta
16
,
317
321
(
1977
).
54.
H. K.
Moffatt
and
A.
Sellier
, “
Migration of an insulating particle under the action of uniform ambient electric and magnetic fields. Part 1. General theory
,”
J. Fluid Mech.
464
,
279
286
(
2002
).
55.
E.
Nazockdast
and
J. F.
Morris
, “
Microstructural theory and the rheology of concentrated colloidal suspensions
,”
J. Fluid Mech.
713
,
420
452
(
2012
).
56.
E.
Nazockdast
and
J. F.
Morris
, “
Pair-particle dynamics and microstructure in sheared colloidal suspensions: Simulation and Smoluchowski theory
,”
Phys. Fluids
25
(
7
),
070601
(
2013
).
57.
T.-W.
Pan
and
R.
Glowinski
, “
Numerical study of spheres settling in Oldroyd-b fluids
,”
Phys. Fluids
30
,
113102
(
2018
).
58.
N.
Phan-Thien
and
X.-J.
Fan
, “
Pressure drop created by a sphere settling in a tube containing a fiber suspension
,”
J. Rheol.
43
(
1
),
1
8
(
1999
).
59.
N.
Phan-Thien
and
A. L.
Graham
, “
A new constitutive model for fibre suspensions: Flow past a sphere
,”
Rheol. Acta
30
(
1
),
44
57
(
1991
).
60.
R. J.
Phillips
, “
Dynamic simulation of hydrodynamically interacting spheres in a quiescent second-order fluid
,”
J. Fluid Mech.
315
,
345
365
(
1996
).
61.
R. J.
Phillips
and
L.
Talini
, “
Chaining of weakly interacting particles suspended in viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
147
,
175
188
(
2007
).
62.
M. J.
Riddle
,
C.
Narvaez
, and
R. B.
Bird
, “
Interactions between two spheres falling along their line of centers in a viscoelastic fluid
,”
J. Non-Newtonian Fluid Mech.
2
,
23
35
(
1977
).
63.
D.
Saintillan
, “
Rheology of active fluids
,”
Annu. Rev. Fluid Mech.
50
,
563
592
(
2018
).
64.
S.
Antoine
, “
Migration of an insulating particle under the action of uniform ambient electric and magnetic fields. Part 2. Boundary formulation and ellipsoidal particles
,”
J. Fluid Mech.
488
,
335
353
(
2003
).
65.
P.
Singh
,
D. D.
Joseph
,
T. I.
Hesla
,
R.
Glowinski
, and
T.-W.
Pan
, “
A distributed Lagrange multiplier/fictitious domain method for viscoelastic particulate flows
,”
J. Non-Newtonian Fluid Mech.
91
,
165
188
(
2000
).
66.
M.
Stimson
and
G. B.
Jeffery
, “
The motion of two spheres in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
,
111
,
110
116
(
1926
).
67.
A. H.
Sulaymon
,
A.
Catherine
,
M. E.
Wilson
, and
A. I.
Alwared
, “
An experimental investigation of the settling behavior of two spheres in a power law fluid
,”
J. Non-Newtonian Fluid Mech.
192
,
29
36
(
2013
).
68.
R.
Verma
,
J. C.
Crocker
,
T. C.
Lubensky
, and
A. G.
Yodh
, “
Attractions between hard colloidal spheres in semiflexible polymer solutions
,”
Macromolecules
33
(
1
),
177
186
(
2000
).
69.
K.
Yaman
,
C.
Jeppesen
, and
C. M.
Marques
, “
Depletion forces between two spheres in a rod solution
,”
Europhys. Lett.
42
(
2
),
221
(
1998
).
70.
Z.
Yu
,
W.
Anthony
, and
Y.
Peysson
, “
Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method
,”
J. Non-Newtonian Fluid Mech.
136
,
126
139
(
2006
).
71.
R.
Zheng
,
R. I.
Tanner
, and
X.-J.
Fan
,
Flow-Induced Alignment in Short-Fiber Reinforced Polymers
(
Springer
,
Berlin, Heidelberg
,
2011
), pp.
65
86
.
72.
L.
Zhu
,
E.
Lauga
, and
L.
Brandt
, “
Self-propulsion in viscoelastic fluids: Pushers vs. pullers
,”
Phys. Fluids
24
,
051902
(
2012
).
73.
Q. Z.
Zhu
, “
Effects of fluid rheological properties on the settling and interaction of spherical particles in non-Newtonian fluids
,” Ph.D. thesis (The University of Alabama,
1998
).
You do not currently have access to this content.