The stability of equilibrium points and their bifurcations for a peristaltic transport of an incompressible viscous fluid through a curved channel have been studied when the channel width is assumed to be very small as compared to the wavelength of peristaltic wave and inertial effects are negligible. An analytic solution for the stream function has been obtained in a moving coordinate system which is translating with the wave velocity. Equilibrium points in the flow field are located and categorized by developing a system of nonlinear autonomous differential equations, and the dynamical system methods are used to investigate the local bifurcations and corresponding topological changes. Different flow situations, encountered in the flow field, are classified as backward flow, trapping, and augmented flow. The transition of backward flow into a trapping phenomenon corresponds to the first bifurcation, where a nonsimple degenerate point bifurcates under the wave crest and forms a saddle-center pair with the homoclinic orbit. The second bifurcation appears when the saddle point further bifurcates to produce the heteroclinic connection between the saddle nodes that enclose the recirculating eddies. The third bifurcation point manifests in the flow field due to the transition of trapping into augmented flow, in which a degenerate saddle bifurcates into saddle nodes under the wave trough. The existence of second critical condition is exclusive for peristaltic flow in a curved channel. This bifurcation tends to coincide with the first one with a gradual reduction in the channel curvature. Global bifurcation diagrams are utilized to summarize these bifurcations.

1.
J. C.
Burns
and
T.
Parkes
, “
Peristaltic motion
,”
J. Fluid Mech.
29
,
731
743
(
1967
).
2.
A. H.
Shapiro
,
M. Y.
Jaffrin
, and
S. L.
Weinberg
, “
Peristaltic pumping with long wavelengths at low Reynolds number
,”
J. Fluid Mech.
37
,
799
825
(
1969
).
3.
T. S.
Chow
, “
Peristaltic transport in a circular cylindrical pipe
,”
J. Appl. Mech.
37
,
901
905
(
1970
).
4.
M. Y.
Jaffrin
and
A. H.
Shapiro
, “
Peristaltic pumping
,”
Annu. Rev. Fluid Mech.
3
,
13
36
(
1971
).
5.
S. K.
Guha
,
H.
Kaur
, and
A. M.
Ahmad
, “
Mechanism of spermatic flow in the vas deferens
,”
Med. Biol. Eng.
13
,
518
522
(
1975
).
6.
K.
Ayukawa
,
T.
Kawa
, and
M.
Kimura
, “
Streamlines and pathlines in peristaltic flows at high Reynolds numbers
,”
Bull. Jpn. Soc. Mech. Eng.
24
,
948
955
(
1981
).
7.
S.
Takabatake
,
K.
Ayukawa
, and
A.
Mori
, “
Peristaltic pumping in circular cylindrical tubes: A numerical study of fluid transport and its efficiency
,”
J. Fluid Mech.
193
,
267
283
(
1988
).
8.
S.
Takabataka
and
K.
Ayukawa
, “
Numerical study of two-dimensional peristaltic flows
,”
J. Fluid Mech.
122
,
439
465
(
1982
).
9.
Kh. S.
Mekheimer
, “
Nonlinear peristaltic transport through a porous medium in an inclined planar channel
,”
J. Porous Media
6
,
189
201
(
2003
).
10.
A. M.
Siddiqui
,
T.
Hayat
, and
M.
Khan
, “
Magnetic fluid model induced by peristaltic waves
,”
J. Phys. Soc. Jpn.
73
,
2142
2147
(
2004
).
11.
J.
Jiménez-Lozano
and
M.
Sen
, “
Particle dispersion in two-dimensional peristaltic flow
,”
Phys. Fluids
22
(
4
),
043303
(
2010
).
12.
Y. C.
Fung
and
C. S.
Yih
, “
Peristaltic transport
,”
J. Appl. Mech.
35
,
669
675
(
1968
).
13.
M.
Hanin
, “
The flow through a channel due to transversely oscillating walls
,”
Isr. J. Technol.
6
,
67
71
(
1968
).
14.
F.
Blanchette
, “
The influence of suspended drops on peristaltic pumping
,”
Phys. Fluids
26
(
6
),
061902
(
2014
).
15.
A.
Bandopadhyay
,
D.
Tripathi
, and
S.
Chakraborty
, “
Electroosmosis-modulated peristaltic transport in microfluidic channels
,”
Phys. Fluids
28
(
5
),
052002
(
2016
).
16.
H.
Sato
,
T.
Kawai
,
T.
Fujita
, and
M.
Okabe
, “
Two-dimensional peristaltic flow in curved channels
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
66
,
679
685
(
2000
).
17.
N.
Ali
,
M.
Sajid
, and
T.
Hayat
, “
Long wavelength flow analysis in a curved channel
,”
Z. Naturforsch. A
65
,
191
196
(
2010
).
18.
N.
Ali
,
M.
Sajid
,
T.
Javed
, and
Z.
Abbas
, “
Heat transfer analysis of peristaltic flow in a curved channel
,”
Int. J. Heat Mass Transfer
53
,
3319
3325
(
2010
).
19.
T.
Hayat
,
M.
Javed
, and
A.
Hendi
, “
Peristaltic transport of viscous fluid in a curved channel with compliant walls
,”
Int. J. Heat Mass Transfer
54
,
1615
1621
(
2011
).
20.
J. V.
Ramanamurthy
,
K. M.
Prasad
, and
V. K.
Narla
, “
Unsteady peristaltic transport in curved channels
,”
Phys. Fluids
25
(
9
),
091903
(
2013
).
21.
P. G.
Bakker
,
Bifurcations in Flow Patterns
(
Kluwer Academic Publishers
,
Dordrecht
,
1991
).
22.
J. N.
Hartnack
, “
Streamline topologies near a fixed wall using normal forms
,”
Acta Mech.
136
,
55
75
(
1999
).
23.
M.
Brønse
and
J. N.
Hartnack
, “
Streamline topologies near simple degenerate critical points in two-dimensional flow away from the boundaries
,”
Phys. Fluids
11
,
314
324
(
1999
).
24.
F.
Gürcan
and
A.
Deliceoglu
, “
Streamline topologies near nonsimple degenerate points in two dimensional flows with double symmetry away from boundaries and an application
,”
Phys. Fluids
17
,
093106
(
2005
).
25.
M.
Brøns
, “
Streamline topology: Patterns in fluid flows and their bifurcations
,”
Adv. Appl. Mech.
41
,
1
42
(
2007
).
26.
T. S.
Lin
,
S.
Rogers
,
D.
Tseluiko
, and
U.
Thiele
, “
Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder
,”
Phys. Fluids
28
(
8
),
082102
(
2016
).
27.
Z.
Lin
,
Y.
Zhu
, and
Z.
Wang
, “
Local bifurcation of electrohydrodynamic waves on a conducting fluid
,”
Phys. Fluids
29
(
3
),
032107
(
2017
).
28.
A.
Balci
,
M.
Andersen
,
M. C.
Thompson
, and
M.
Brøns
, “
Codimension three bifurcation of streamline patterns close to a no-slip wall: A topological description of boundary layer eruption
,”
Phys. Fluids
27
(
5
),
053603
(
2015
).
29.
J.
Jiménez-Lozano
and
M.
Sen
, “
Streamline topologies of two-dimensional flow and their bifurcations
,”
Chem. Eng. Process.
49
,
704
715
(
2010
).
30.
Z.
Asghar
and
N.
Ali
, “
Slip effects on streamline topologies and their bifurcations for peristaltic flow of a viscous fluid
,”
Chin. Phys. B
23
,
064701
(
2014
).
31.
Z.
Asghar
and
N.
Ali
, “
Streamline topologies and their bifurcations for mixed convective peristaltic flow
,”
AIP Adv.
5
,
097142
(
2015
).
32.
L.
Perko
,
Differential Equations and Dynamical Systems
(
Springer
,
2000
).
33.
R.
Seydel
,
From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis
(
Elsevier
,
1988
).
You do not currently have access to this content.