In a recent paper, we demonstrated the emergence of ratchet flows in thin liquid films subjected to tangential two-frequency vibrations [E. Sterman-Cohen, M. Bestehorn, and A. Oron, “Ratchet flow of thin liquid films induced by a two-frequency tangential forcing,” Phys. Fluids 30, 022101 (2018)], and asymmetric forcing was found to be a sole driving mechanism for these ratchet flows. In this paper, we consider other two-frequency excitations and reveal an additional driving mechanism of an emerging ratchet flow when the acceleration imparted by forcing is symmetric with respect to a certain moment of time within the forcing period (this type of forcing referred to as “symmetric forcing”). This driving mechanism exhibits an intricate interaction between forcing, capillarity, and gravity. We find that in contradistinction with the case of asymmetric forcing where the flow intensity reaches a constant value in the large-time limit, in the case of symmetric forcing the flow intensity exhibits oscillatory variation in time. We also discuss the flow intensity variation of the emerging ratchet flows with the fundamental wavenumber of the disturbance.

1.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
2.
T. G.
Myers
, “
Thin films with high surface tension
,”
SIAM Rev.
40
,
441
(
1998
).
3.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
4.
P.
Brunet
,
J.
Eggers
, and
R. D.
Deegan
, “
Vibration-induced climbing of drops
,”
Phys. Rev. Lett.
99
,
144501
(
2007
).
5.
X.
Noblin
,
R.
Kofman
, and
F.
Celestini
, “
Ratchet-like motion of a shaken drop
,”
Phys. Rev. Lett.
102
,
194504
(
2009
).
6.
J.
Drahos
,
J.
Tihon
,
V.
Sobolik
,
P.
Hasal
,
I.
Schreiber
, and
M.
Marek
, “
Analysis of wave modes in liquid film falling down a vertical oscillating plate
,”
Chem. Eng. Sci.
52
,
1163
(
1996
).
7.
J.
Tihon
,
V.
Penkavova
, and
J.
Drahos
, “
Characteristics of waves on liquid films flowing down an oscillating inclined plate
,” in
12th International Congress CHISA
,
Prague
,
1996
.
8.
A.
Oron
and
O.
Gottlieb
, “
Nonlinear dynamics of temporally excited falling liquid films
,”
Phys. Fluids
14
,
2622
(
2002
).
9.
R. J.
Bauer
and
C. H.
von Kerczek
, “
Stability of liquid film flow down an oscillating wall
,”
J. Appl. Mech.
58
,
278
(
1991
).
10.
S. P.
Lin
,
J. N.
Chen
, and
D. R.
Woods
, “
Suppression of instability in a liquid film flow
,”
Phys. Fluids
8
,
3247
(
1996
).
11.
S. P.
Lin
and
J. N.
Chen
, “
Elimination of three-dimensional waves in a film flow
,”
Phys. Fluids
9
,
3926
(
1997
).
12.
L.
Rayleigh
, “
Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density
,”
Proc. London Math. Soc.
s1-s14
,
170
(
1882
).
13.
G.
Taylor
, “
The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (Part I)
,”
Proc. R. Soc. London, Ser. A
201
,
192
(
1950
).
14.
D.
Halpern
and
A. L.
Frenkel
, “
Saturated Rayleigh-Taylor instability of an oscillating Couette film flow
,”
J. Fluid Mech.
446
,
67
(
2001
).
15.
A. L.
Frenkel
and
D.
Halpern
, “
On saturation of Rayleigh-Taylor instability
,” in
Fluid Mechanics and its Applications
, IUTAM Symposium on Nonlinear Waves in Multi-Phase Flow Vol. 57, edited by
H.-C.
Chang
(
Springer
,
Dordrecht
,
2000
).
16.
O.
Gottlieb
and
A.
Oron
, “
Stability and bifurcations of parametrically excited thin liquid films
,”
Int. J. Bifurcation Chaos
14
,
4117
(
2004
).
17.
A.
Oron
,
O.
Gottlieb
, and
E.
Novbari
, “
Weighted-residual integral boundary-layer model of temporally excited falling liquid films
,”
Eur. J. Mech.: B/Fluids
28
,
37
(
2009
).
18.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin liquid film on an axially oscillating cylindrical surface
,”
Phys. Fluids
22
,
032101
(
2010
).
19.
O.
Haimovich
and
A.
Oron
, “
Nonlinear dynamics of a thin nonisothermal liquid film on an axially oscillating cylindrical surface
,”
Phys. Rev. E
84
,
061605
(
2011
).
20.
O.
Haimovich
and
A.
Oron
, “
Healing of an axisymmetric thin liquid film on a harmonically oscillating horizontal cylindrical surface
,”
Acta Mech.
226
,
3587
(
2015
).
21.
M.
Bestehorn
,
Q.
Han
, and
A.
Oron
, “
Nonlinear pattern formation in thin liquid films under external vibrations
,”
Phys. Rev. E
88
,
023025
(
2013
).
22.
M.
Bestehorn
, “
Laterally extended thin liquid films with inertia under external vibrations
,”
Phys. Fluids
25
,
114106
(
2013
).
23.
D. W.
Jordan
and
P.
Smith
,
Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems
, 3rd ed. (
Oxford University Press
,
1999
).
24.
E.
Sterman-Cohen
,
M.
Bestehorn
, and
A.
Oron
, “
Rayleigh Taylor instability in thin liquid films subjected to harmonic vibrations
,”
Phys. Fluids
29
,
052105
(
2017
);
E.
Sterman-Cohen
,
M.
Bestehorn
, and
A.
Oron
,
Phys. Fluids
Erratum,
29
,
109901
(
2017
).
25.
L.
Wang
,
H.
Wu
, and
F.
Wang
, “
Efficient transport of droplet sandwiched between saw-tooth plates
,”
J. Colloid Interface Sci.
462
,
280
(
2016
).
26.
H.
Linke
,
B. J.
Alemán
,
L. D.
Melling
,
M. J.
Taormina
,
M. J.
Francis
,
C. C.
Dow-Hygelund
,
V.
Narayanan
,
R. P.
Taylor
, and
A.
Stout
, “
Self-propelled Leidenfrost droplets
,”
Phys. Rev. Lett.
96
,
154502
(
2006
).
27.
G.
Lagubeau
,
M.
Le Merrer
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost on a ratchet
,”
Nat. Phys.
7
,
395
(
2011
).
28.
G.
Dupeux
,
M.
Le Merrer
,
G.
Lagubeau
,
C.
Clanet
,
S.
Hardt
, and
D.
Quéré
, “
Viscous mechanism for Leidenfrost propulsion on a ratchet
,”
Europhys. Lett.
96
,
58001
(
2011
).
29.
Á. G.
Marin
,
D. A.
del Cerro
,
G. R. B. E.
Römer
,
B.
Pathiraj
,
A. H.
in ’t Veld
, and
D.
Lohse
, “
Capillary droplets on Leidenfrost micro-ratchets
,”
Phys. Fluids
24
,
122001
(
2012
).
30.
D.
Quéré
, “
Leidenfrost dynamics
,”
Annu. Rev. Fluid Mech.
45
,
197
(
2013
).
31.
G.
Dupeux
,
T.
Baier
,
V.
Bacot
,
S.
Hardt
,
C.
Clanet
, and
D.
Quéré
, “
Self-propelling uneven Leidenfrost solids
,”
Phys. Fluids
25
,
051704
(
2013
).
32.
Z.-H.
Jia
,
M.-Y.
Chen
, and
H.-T.
Zhu
, “
Reversible self-propelled Leidenfrost droplets on ratchet surfaces
,”
Appl. Phys. Lett.
110
,
091603
(
2017
).
33.
A. D.
Stroock
,
R. F.
Ismagilov
,
H. A.
Stone
, and
G. M.
Whitesides
, “
Fluidic ratchet based on Marangoni-Bénard convection
,”
Langmuir
19
,
4358
(
2003
).
34.
V.
Frumkin
and
A.
Oron
, “
Liquid film flow along a substrate with an asymmetric topography sustained by the thermocapillary effect
,”
Phys. Fluids
28
,
082107
(
2016
).
35.
V.
Frumkin
and
A.
Oron
, “
Thermocapillary flow of a thin liquid film in a confined two-layer system under a hydrophobic plate
,”
Phys. Rev. Fluids
2
,
104002
(
2017
).
36.
E.
Sterman-Cohen
,
M.
Bestehorn
, and
A.
Oron
, “
Ratchet flow of thin liquid films induced by a two-frequency tangential forcing
,”
Phys. Fluids
30
,
022101
(
2018
).
37.
K.
John
and
U.
Thiele
, “
Self-ratcheting Stokes drops driven by oblique vibrations
,”
Phys. Rev. Lett.
104
,
107801
(
2010
).
38.
R. L.
Agapov
,
J. B.
Boreyko
,
D. P.
Briggs
,
B. R.
Srijanto
,
S. T.
Retterer
,
C. P.
Collier
, and
N. V.
Lavrik
, “
Length scale selects directionality of droplets on vibrating pillar ratchet
,”
Adv. Mater. Interfaces
1
,
1400337
(
2014
).
39.
H.
Ding
,
X.
Zhu
,
P.
Gao
, and
X.-Y.
Lu
, “
Ratchet mechanism of drops climbing a vibrated oblique plate
,”
J. Fluid Mech.
835
,
R1
(
2018
).
40.
U.
Thiele
and
K.
John
, “
Transport of free surface liquid films and drops by external ratchets and self-ratcheting mechanisms
,”
Chem. Phys.
375
,
578
(
2010
).
41.
Z.
Zhang
,
H.
Stark
, and
A. S.
Mikhailov
, “
Hydrodynamic ratchet: Controlled motion of a polymer in an alternating microchannel flow
,”
Europhys. Lett.
104
,
14002
(
2013
).
42.
Y. S.
Lubbersen
,
M. A. I.
Schutyser
, and
R. M.
Boom
, “
Suspension separation with deterministic ratchets at moderate Reynolds numbers
,”
Chem. Eng. Sci.
73
,
314
(
2012
).
43.
S. M.
McFaul
,
B. K.
Lin
, and
H.
Ma
, “
Cell separation based on size and deformability using microfluidic funnel ratchets
,”
Lab Chip
12
,
2369
(
2012
).
44.
B. K.
Lin
,
S. M.
McFaul
,
C.
Jin
,
P. C.
Black
, and
H.
Ma
, “
Highly selective biomechanical separation of cancer cells from leukocytes using microfluidic ratchets and hydrodynamic concentrator
,”
Biomicrofluidics
7
,
034114
(
2013
).
45.
S.
Richter
and
M.
Bestehorn
, “
Direct numerical simulations of liquid films in two dimensions under horizontal and vertical external vibrations
,”
Phys. Rev. Fluids
4
,
044004
(
2019
).
46.
J.
Liu
and
J. P.
Gollub
, “
Solitary wave dynamics of film flows
,”
Phys. Fluids
6
,
1702
(
1994
).
47.
P. S.
Hammond
, “
Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe
,”
J. Fluid Mech.
137
,
363
(
1983
).
48.
A.
Oron
and
P.
Rosenau
, “
Formation of patterns induced by thermocapillarity and gravity
,”
J. Phys. II
2
,
131
(
1992
).
49.
J. R.
Lister
,
J. M.
Rallison
,
A. A.
King
,
L. J.
Cummings
, and
O. E.
Jensen
, “
Capillary drainage of an annular film: The dynamics of collars and lobes
,”
J. Fluid Mech.
552
,
311
(
2006
).

Supplementary Material

You do not currently have access to this content.