A combined approach for the simulation of reactive, neutral, partially or fully ionized plasma flows is presented. This is realized in a code framework named “PICLas” for the approximate solution of the Boltzmann equation by particle based methods. PICLas combines the particle-in-cell method for the collisionless Vlasov–Maxwell system and the direct simulation Monte Carlo method for neutral reactive flows. Basic physical and mathematical modeling of both methods is addressed, and some application examples are presented in order to demonstrate the capabilities and the broad applicability of the solution strategy.

1.
M.
Quandt
, “
High order particle transport for PIC simulations of plasma flows
,” Ph.D. thesis,
University of Stuttgart
,
2010
.
2.
J.
Neudorfer
, “
Numerical methods and computational strategies for particle-in-cell simulations of large scale engineering applications
,” Ph.D. thesis,
RWTH Aachen
,
2012
.
3.
A.
Stock
, “
A high-order particle-in-cell method for low density plasma flow and the simulation of gyrotron resonator devices
,” Ph.D. thesis,
University of Stuttgart
,
Germany
,
2013
.
4.
C.-D.
Munz
,
R.
Schneider
, and
U.
Voss
, “
A finite-volume particle-in-cell method for the numerical simulation of devices in pulsed power technology
,”
Surv. Math. Ind.
8
,
243
(
1999
).
5.
C.-D.
Munz
,
P.
Ommes
, and
R.
Schneider
, “
Three-dimensional finite-volume solver for the Maxwell equations with divergence cleaning on unstructured meshes
,”
Comput. Phys. Commun.
130
,
83
(
2000
).
6.
C.-D.
Munz
,
P.
Omnes
,
R.
Schneider
,
E.
Sonnendrücker
, and
U.
Voss
, “
Divergence correction techniques for Maxwell solvers based on a hyperbolic model
,”
J. Comput. Phys.
161
,
484
(
2000
).
7.
C. D.
Munz
,
R.
Schneider
, and
U.
Voss
, “
A finite-volume method for the Maxwell equations in the time domain
,”
SIAM J. Sci. Comput.
22
(
2
),
449
(
2000
).
8.
O. E.
Bauer
, “
Modeling of charged particle collisions in rarefied plasma flows with stochastic methods for particle-in-cell simulations
,” Ph.D. thesis,
University of Stuttgart
,
2016
.
9.
P.
Ortwein
, “
Implicit time integration strategies for a particle-in-cell solver
,” Ph.D. thesis,
University of Stuttgart
,
2019
.
10.
T.
Binder
, “
Development and application of PICLas for combined optic-/plume-simulation of ion-propulsion systems
,” Ph.D. thesis,
University of Stuttgart
,
2019
.
11.
S. M.
Copplestone
, “
Construction of numerical methods for the simulation of electromagnetic plasma interactions
,” Ph.D. thesis,
University of Stuttgart
,
2019
.
12.
S.
Fasoulas
, “
Experimentelle und theoretische charakterisierung einer hochenthalpen stickstoffströmung zur wiedereintrittssimulation
,” Ph.D. thesis,
University of Stuttgart
,
1995
.
13.
M.
Laux
, “
Direkte simulation verduennter, reagierender stroemungen
,” Ph.D. thesis,
University of Stuttgart
,
1996
.
14.
D.
Petkow
, “
Modellierung von teilchenkollisionen zur berechnung hochverdünnter plasmaströmungen
,” Ph.D. thesis,
University of Stuttgart
,
2011
.
15.
T.
Stindl
, “
Entwicklung und untersuchung eines partikelverfahrens zur simulation elektromagnetischer wechselwirkungen in verdünnten plasmaströmungen
,” Ph.D. thesis,
University of Stuttgart
,
2015
.
16.
M.
Pfeiffer
, “
Simulation elektromagnetischer wechselwirkungen in plasmaströmungen großer skalengradienten unter verwendung eines gekoppelten particle-in-cell und direct simulation Monte Carlo verfahrens
,” Ph.D. thesis,
University of Stuttgart
,
2015
.
17.
E.
Torres
, “
Ab initio quantum-chemistry database for N2(v, J) + N in a state-to-state implementation of the DSMC method
,” Ph.D. thesis,
University of Stuttgart
,
2017
.
18.
P.
Nizenkov
, “
Numerical simulation of rarefied, high-enthalpy gas flows around complex three-dimensional bodies during atmospheric entry
,” Ph.D. thesis,
University of Stuttgart
,
2018
.
19.
W.
Reschke
,
B.
Massuti-Ballester
,
M.
Pfeiffer
,
G.
Herdrich
, and
S.
Fasoulas
, “
Validation of DSMC and CFD based catalysis modeling using plasma wind tunnel flows
,” in
AIP Proceedings, 31st International Symposium on Rarefied Gas Dynamics
,
2019
.
20.
A.
Mirza
,
P.
Nizenkov
,
M.
Pfeiffer
, and
S.
Fasoulas
, “
Three-dimensional implementation of the low diffusion method for continuum flow simulations
,”
Comput. Phys. Commun.
220
,
269
278
(
2017
).
21.
A.
Mirza
, “
Entwicklung eines partikelbasierten kontinuumsverfahrens zur bidirektionalen kopplung mit der direct simulation Monte Carlo methode
,” Ph.D. thesis,
University of Stuttgart
,
2019
.
22.
M.
Pfeiffer
and
M.
Gorji
, “
Adaptive particle–cell algorithm for Fokker–Planck based rarefied gas flow simulations
,”
Comput. Phys. Commun.
213
,
1
(
2017
).
23.
M.
Pfeiffer
, “
Extending the particle ellipsoidal statistical Bhatnagar-Gross-Krook method to diatomic molecules including quantized vibrational energies
,”
Phys. Fluids
30
(
11
),
116103
(
2018
).
24.
M.
Pfeiffer
, “
Particle-based fluid dynamics: Comparison of different Bhatnagar-Gross-Krook models and the direct simulation Monte Carlo method for hypersonic flows
,”
Phys. Fluids
30
(
10
),
106106
(
2018
).
25.
J.
Beyer
,
M.
Pfeiffer
, and
S.
Fasoulas
, “
Radiation modeling in the PIC-DSMC code PICLas
,” in
Proceedings 8th International Workshop on Radiation of High Temperature Gases
,
2019
.
26.
T.
Binder
,
S.
Copplestone
,
A.
Mirza
,
P.
Nizenkov
,
P.
Ortwein
,
M.
Pfeiffer
,
W.
Reschke
,
C.-D.
Munz
, and
S.
Fasoulas
, “
Load balancing strategies for the DSMC simulation of hypersonic flows using HPC
,” e-print arXiv:1811.04742 [physics.comp-ph] (
2018
).
27.
P.
Ortwein
,
T.
Binder
,
S.
Copplestone
,
A.
Mirza
,
P.
Nizenkov
,
M.
Pfeiffer
,
C.-D.
Munz
, and
S.
Fasoulas
, “
A load balance strategy for hybrid particle-mesh methods
,” e-print arXiv:1811.05152 [physics.comp-ph] (
2018
).
28.
A. V.
Bobylev
and
K.
Nanbu
, “
Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and Landau-Fokker-Planck equation
,”
Phys. Rev. E
61
,
4576
(
2000
).
29.
K.
Nanbu
, “
Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and gases
,”
IEEE Trans. Plasma Sci.
28
,
971
(
2000
).
30.
M.
Evans
and
F.
Harlow
, “
The particle-in-cell method for hydrodynamic calculations
,” Report No. LA-2139,
Los Alamos Scientific Laboratory
,
1957
.
31.
O.
Buneman
, “
Dissipation of currents in ionized media
,”
Phys. Rev.
115
(
3
),
503
(
1959
).
32.
J. M.
Dawson
, “
One-dimensional plasma model
,”
Phys. Fluids
5
(
4
),
445
(
1962
).
33.
C. K.
Birdsall
and
A. B.
Langdon
,
Plasma Physics via Computer Simulation
(
McGraw-Hill
,
1985
).
34.
R. W.
Hockney
and
J. W.
Eastwood
,
Computer Simulation Using Particles
(
CRC Press
,
1988
).
35.
J.
Hesthaven
and
T.
Warburton
,
Nodal Discontinuous Galerkin Methods: Algorithms, Analysis and Applications
(
Springer Verlag
,
2008
).
36.
F.
Hindenlang
,
G. J.
Gassner
,
C.
Altmann
,
A.
Beck
,
M.
Staudenmaier
, and
C.-D.
Munz
, “
Explicit discontinuous Galerkin methods for unsteady problems
,”
Comput. Fluids
61
,
86
(
2012
).
37.
D. A.
Kopriva
,
Implementing Spectral Methods for Partial Differential Equations
(
Springer Verlag
,
2009
).
38.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
(
Springer Verlag
,
1997
).
39.
G. E.
Karniadakis
and
S. J.
Sherwin
,
Spectral/HP Element Methods for Computational Fluid Dynamics
(
Oxford University Press
,
2005
).
40.
C.
Müller
,
Foundations of the Mathematical Theory of Electromagnetic Waves
(
Springer Verlag
,
1969
).
41.
A. F.
Peterson
, “
Absorbing boundary conditions for the vector wave equation
,”
Microwave Opt. Technol. Lett.
1
(
2
),
62
(
1988
).
42.
C.-D.
Munz
,
M.
Auweter-Kurtz
,
S.
Fasoulas
,
A.
Mirza
,
P.
Ortwein
,
M.
Pfeiffer
, and
T.
Stindl
, “
Coupled particle-in-cell and direct simulation Monte Carlo method for simulating reactive plasma flows
,”
C. R. Mec.
342
(
10-11
),
662
(
2014
).
43.
M.
Pfeiffer
,
C.-D.
Munz
, and
S.
Fasoulas
, “
Hyperbolic divergence cleaning, the electrostatic limit, and potential boundary conditions for particle-in-cell codes
,”
J. Comput. Phys.
294
,
547
(
2015
).
44.
B.
Cockburn
,
B.
Dong
,
J.
Guzman
,
M.
Restelli
, and
R.
Sacco
, “
A hybridizable discontinuous Galerkin method for steady-state convection-diffusion reaction problems
,”
SIAM J. Sci. Comput.
31
(
5
),
3827
(
2009
).
45.
B.
Cockburn
and
J.
Gopalakrishnan
, “
The derivation of hybridizable discontinuous Galerkin methods for stokes flow
,”
SIAM J. Numer. Anal.
47
(
2
),
1092
(
2009
).
46.
B.
Cockburn
and
J.
Gopalakrishnan
, “
New hybridization techniques
,”
GAMM-Mitt.
28
(
2
),
154
(
2005
).
47.
M.
Pfeiffer
,
F.
Hindenlang
,
T.
Binder
,
S. M.
Copplestone
,
C.-D.
Munz
, and
S.
Fasoulas
, “
A particle-in-cell solver based on a high-order hybridizable discontinuous Galerkin spectral element method on unstructured curved meshes
,”
Comput. Methods Appl. Mech. Eng.
349
,
149
(
2019
).
48.
P.
Ortwein
,
S. M.
Copplestone
,
C.-D.
Munz
,
T.
Binder
,
W.
Reschke
, and
S.
Fasoulas
, “
A particle localization algorithm on unstructured curvilinear polynomial meshes
,”
Comput. Phys. Commun.
235
,
63
(
2019
).
49.
M.
Pfeiffer
,
A.
Mirza
,
C.-D.
Munz
, and
S.
Fasoulas
, “
Two statistical particle merge and split methods for particle-in-cell codes
,”
Comput. Phys. Commun.
191
,
9
(
2015
).
50.
T.
Stindl
,
J.
Neudorfer
,
A.
Stock
,
M.
Auweter-Kurtz
,
C.-D.
Munz
,
S.
Roller
, and
R.
Schneider
, “
Comparison of coupling techniques in a high-order discontinuous Galerkin-based particle-in-cell solver
,”
J. Phys. D: Appl. Phys.
44
,
194004
(
2011
).
51.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
).
52.
G. A.
Bird
,
The DSMC Method
(
CreateSpace Independent Publishing Platform
,
2013
).
53.
I. D.
Boyd
and
T. E.
Schwartzentruber
,
Nonequilibrium Gas Dynamics and Molecular Simulation
(
Cambridge University Press
,
2017
).
54.
D.
Liechty
and
M. J.
Lewis
, “
Treatment of electronic energy level transition and ionization following the particle-based chemistry model
,” in
8th AIAA Aerospace Sciences Meeting
(
AIAA
,
2010
).
55.
A.
Kramida
,
Y.
Ralchenko
, and
J.
Reader
, NIST Atomic Spectra Database (version 5.4),
2016
.
56.
K. P.
Huber
and
G.
Herzberg
, “
Constants of diatomic molecules
,” in
Molecular Spectra and Molecular Structure
(
Van Nostrand Reinhold Company
,
1979
).
57.
G.
Herzberg
, “
Electronic spectra and electronic structure of polyatomic molecules
,” in
Molecular Spectra and Molecular Structure
(
Van Nostrand Company
,
1966
).
58.
M.
Pfeiffer
,
A.
Mirza
, and
S.
Fasoulas
, “
A grid-independent particle pairing strategy for DSMC
,”
J. Comput. Phys.
246
,
28
(
2013
).
59.
D.
Baganoff
and
J. D.
McDonald
, “
A collision selection rule for a particle simulation method suited to vector computers
,”
Phys. Fluids A
2
(
7
),
1248
(
1990
).
60.
G. A.
Bird
, “
Definition of mean free path for real gases
,”
Phys. Fluids
26
(
11
),
3222
(
1983
).
61.
C. N.
Hinshelwood
,
The Kinetics of Chemical Change
(
Oxford University Press
,
London
,
1940
).
62.
K.
Koura
and
H.
Matsumoto
, “
Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential
,”
Phys. Fluids A
3
(
10
),
2459
(
1991
).
63.
H. A.
Hassan
and
D. B.
Hash
, “
A generalized hard-sphere model for Monte Carlo simulation
,”
Phys. Fluids A
5
(
3
),
738
(
1993
).
64.
J.
Fan
, “
A generalized soft-sphere model for Monte Carlo simulation
,”
Phys. Fluids
14
(
12
),
4399
(
2002
).
65.
M.
Pfeiffer
,
P.
Nizenkov
,
A.
Mirza
, and
S.
Fasoulas
, “
Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases
,”
Phys. Fluids
28
(
2
),
027103
(
2016
).
66.
P.
Nizenkov
,
M.
Pfeiffer
,
A.
Mirza
, and
S.
Fasoulas
, “
Modeling of chemical reactions between polyatomic molecules for atmospheric entry simulations with direct simulation Monte Carlo
,”
Phys. Fluids
29
(
7
),
077104
(
2017
).
67.
B. L.
Haas
,
D. B.
Hash
,
G. A.
Bird
,
F. E. I.
Lumpkin
, and
H. A.
Hassan
, “
Rates of thermal relaxation in direct simulation Monte Carlo methods
,”
Phys. Fluids
6
(
6
),
2191
(
1994
).
68.
K.
Nanbu
,
T.
Honda
, and
S.
Igarashi
, “
Probability of inelastic collisions for the Larsen-Borgnakke model to the Monte Carlo simulation method
,”
J. Thermophys. Heat Transfer
5
(
2
),
251
(
1991
).
69.
I. D.
Boyd
, “
Relaxation of discrete rotational energy distributions using a Monte Carlo method
,”
Phys. Fluids A
5
(
9
),
2278
(
1993
).
70.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture
,”
J. Comput. Phys.
18
(
4
),
405
(
1975
).
71.
I.
Adamovich
,
S.
MacHeret
,
J.
Rich
, and
C.
Treanor
, “
Vibrational energy transfer rates using a forced harmonic oscillator model
,”
J. Thermophys. Heat Transfer
12
(
1
),
57
(
1998
).
72.
P.
Vijayakumar
,
Q.
Sun
, and
I. D.
Boyd
, “
Vibrational-translational energy exchange models for the direct simulation Monte Carlo method
,”
Phys. Fluids
11
(
8
),
2117
(
1999
).
73.
I. D.
Boyd
and
E.
Josyula
, “
State resolved vibrational relaxation modeling for strongly non-equilibrium flows
,”
Phys. Fluids
23
(
5
),
057101
(
2011
).
74.
R.
Jaffe
,
D.
Schwenke
,
G.
Chaban
, and
W.
Huo
, “
Vibrational and rotational excitation and relaxation of nitrogen from accurate theoretical calculations
,” in
46th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2008
).
75.
D. A.
Andrienko
and
I. D.
Boyd
, “
Master equation study of vibrational and rotational relaxations of oxygen
,”
J. Thermophys. Heat Transfer
30
(
3
),
533
(
2016
).
76.
I. D.
Boyd
and
E.
Josyula
, “
Resolution of the vibrational energy distribution function using a direct simulation Monte Carlo-master equation approach
,”
Phys. Fluids
28
(
1
),
016102
(
2016
).
77.
G. A.
Bird
, “
The Q-K model for gas-phase chemical reaction rates
,”
Phys. Fluids
23
(
10
),
106101
(
2011
).
78.
S. F.
Gimelshein
,
N. E.
Gimelshein
,
D. A.
Levin
,
M. S.
Ivanov
, and
I. J.
Wysong
, “
On the use of chemical reaction rates with discrete internal energies in the direct simulation Monte Carlo method
,”
Phys. Fluids
16
(
7
),
2442
(
2004
).
79.
I. D.
Boyd
, “
Modeling backward chemical rate processes in the direct simulation Monte Carlo method
,”
Phys. Fluids
19
(
12
),
126103
(
2007
).
80.
I. D.
Boyd
and
J. P. W.
Stark
, “
Direct simulation of chemical reactions
,”
J. Thermophys. Heat Transfer
4
(
3
),
391
(
1990
).
81.
F.
Bergemann
and
I. D.
Boyd
, “
New discrete vibrational energy model for the direct simulation Monte Carlo method
,” in
Rarefied Gas Dynamics: Experimental Techniques and Physical Systems
, edited by
B. D.
Shizgal
and
D. P.
Weaver
(
AIAA
,
1994
).
82.
B. L.
Haas
and
I. D.
Boyd
, “
Models for direct Monte Carlo simulation of coupled vibration-dissociation
,”
Phys. Fluids A
5
(
2
),
478
(
1993
).
83.
Y. A.
Bondar
and
M. S.
Ivanov
, “
DSMC dissociation model based on two-temperature chemical rate constant
,” in
45th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2007
).
84.
I. D.
Boyd
,
D.
Bose
, and
G. V.
Candler
, “
Monte Carlo modeling of nitric oxide formation based on quasi-classical trajectory calculations
,”
Phys. Fluids
9
(
4
),
1162
(
1997
).
85.
C. R.
Lilley
and
M. N.
Macrossan
, “
A macroscopic chemistry method for the direct simulation of gas flows
,”
Phys. Fluids
16
(
6
),
2054
(
2004
).
86.
M. A.
Gallis
and
J. K.
Harvey
, “
Modeling of chemical reactions in hypersonic rarefied flow with the direct simulation Monte Carlo method
,”
J. Fluid Mech.
312
,
149
(
1996
).
87.
R.
Zakeri
,
R.
Kamali Moghadam
, and
M.
Mani
, “
New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow
,”
Phys. Fluids
29
(
4
),
047105
(
2017
).
88.
R.
Jaffe
,
D.
Schwenke
, and
G.
Chaban
, “
Vibration-rotation excitation and dissociation in N2-N2 collisions from accurate theoretical calculations
,” in
10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference
(
AIAA
,
2010
).
89.
J. G.
Kim
and
I. D.
Boyd
, “
Monte Carlo simulation of nitrogen dissociation based on state-resolved cross sections
,”
Phys. Fluids
26
(
1
),
012006
(
2014
).
90.
M.
Kulakhmetov
,
M. A.
Gallis
, and
A. A.
Alexeenko
, “
Ab initio-informed maximum entropy modeling of rovibrational relaxation and state-specific dissociation with application to the O2 + O system
,”
J. Chem. Phys.
144
(
17
),
174302
(
2016
).
91.
J. F.
Padilla
and
I. D.
Boyd
, “
Assessment of gas-surface interaction models for computation of rarefied hypersonic flow
,”
J. Thermophys. Heat Transfer
23
,
96
(
2009
).
92.
W.
Reschke
,
T.
Binder
,
J.
Kleinert
,
A.
Mirza
,
P.
Nizenkov
,
M.
Pfeiffer
,
S.
Fasoulas
,
S.
Copplestone
,
P.
Ortwein
, and
C. D.
Munz
, “
Recent developments of DSMC within the reactive plasma flow solver PICLas
,” in
30th International Symposium on Rarefied Gas Dynamics 2016
[
AIP Conf. Proc.
1786
(
1
),
130003
(
2016
)].
93.
G. A.
Bird
,
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
, “
Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating non-continuum gas flows
,”
Phys. Fluids
21
(
1
),
017103
(
2009
).
94.
J. N.
Moss
and
G. A.
Bird
, “
Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions
,”
AIAA J.
43
(
12
),
2565
(
2005
).
95.
J.
Neudorfer
,
A.
Stock
,
J.
Flamm
,
F.
Hindenlang
,
G.
Gassner
,
C.-D.
Munz
,
R.
Schneider
, and
S.
Roller
, “
Numerical investigation of high-order gyrotron mode propagation in launchers at 170 GHz
,”
IEEE Trans. Plasma Sci.
40
(
6
),
1512
(
2012
).
96.
J.
Neudorfer
,
A.
Stock
,
R.
Schneider
,
S.
Roller
, and
C.-D.
Munz
, “
Efficient parallelization of a three-dimensional high-order particle-in-cell method for the simulation of a 170 GHz gyrotron resonator
,”
IEEE Trans. Plasma Sci.
41
(
1
),
87
(
2013
).
97.
A.
Stock
,
J.
Neudorfer
,
M.
Riedlinger
,
G.
Pirrung
,
G.
Gassner
,
R.
Schneider
,
S.
Roller
, and
C.-D.
Munz
, “
Three-dimensional numerical simulation of a 30 GHz gyrotron resonator with an explicit high-order discontinuous Galerkin based parallel particle-on-cell method
,”
IEEE Trans. Plasma Sci.
40
(
7
),
1860
(
2012
).
98.
M.
Pfeiffer
,
D.
Petkow
,
G.
Herdrich
, and
S.
Fasoulas
, “
Assessment of a numerical approach suitable for the M2P2 problem
,”
Open Plasma Phys. J.
4
,
24
(
2011
).
99.
S. M.
Copplestone
,
M.
Pfeiffer
,
S.
Fasoulas
, and
C.-D.
Munz
, “
High-order particle-in-cell simulations of laser-plasma interaction
,”
Eur. Phys. J.: Spec. Top.
227
(
14
),
1603
(
2019
).
100.
E.
d’Humières
,
A.
Brantov
,
V. Yu.
Bychenkov
, and
V. T.
Tikhonchuk
, “
Optimization of laser-target interaction for proton acceleration
,”
Phys. Plasmas
20
,
023103
(
2013
).
101.
S. C.
Wilks
,
A. B.
Langdon
,
T. E.
Cowan
,
M.
Roth
,
M.
Singh
,
S.
Hatchett
,
M. H.
Key
,
D.
Pennington
,
A.
MacKinnon
, and
R. A.
Snavely
, “
Energetic proton generation in ultra-intense laser–solid interactions
,”
Phys. Plasmas
8
(
2
),
542
(
2001
).
102.
T.
Binder
,
M.
Pfeiffer
, and
S.
Fasoulas
, “
Validation of grid current simulations using the particle-in-cell method for a miniaturized ion thruster
,” in
AIP Proceedings, 31st International Symposium on Rarefied Gas Dynamics
,
2019
.
103.
H.
Leiter
,
B.
Lotz
,
D.
Feili
,
M.
Tartz
,
H.
Neumann
, and
D. M.
Di Cara
, “
Design, development and test of the RIT-μx mini ion engine system IEPC-2009-179
,” in
Proceedings of the 31st International Electric Propulsion Conference
(
ERPS
,
2009
).
104.
P.
Nizenkov
,
P.
Noeding
,
M.
Konopka
, and
S.
Fasoulas
, “
Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications
,”
CEAS Space J.
9
(
1
),
139
(
2017
).
105.
M. J.
Wright
,
B. R.
Hollis
,
D.
Bose
, and
L.
Walpot
, “
Post-flight aerothermal analysis of Huygens probe
,” in
3rd International Planetary Probe Workshop
(
European Space Agency
,
2006
), Vol. SP-607.
106.
R.
Savajano
,
R.
Sobbia
,
M.
Gaffuri
, and
P.
Leyland
, “
Reduced chemical kinetic model for titan entries
,”
Int. J. Chem. Eng.
2011
,
1
.
107.
T.
Hermann
,
F.
Zander
,
S.
Loehle
, and
S.
Fasoulas
, “
Measurement of the aerothermodynamic state in a high enthalpy plasma wind-tunnel flow
,”
J. Quant. Spectrosc. Radiat. Transfer
201
,
216
(
2017
).
108.
S.
Löhle
and
P.
Jenniskens
, “
High resolution spectroscopy of the Hayabusa Re-entry using Fabry-perot interferometry
,”
J. Spacecr. Rockets
51
(
6
),
1986
(
2014
).
109.
J.
Grinstead
,
P.
Jenniskens
,
A.
Cassell
,
J.
Albers
, and
M.
Winter
, “
Airborne observation of the Hayabusa sample return capsule Re-entry
,” in
Proceedings of 42nd AIAA Thermophysics Conference
(
AIAA
,
2011
).
110.
C.
Park
, “
Review of chemical-kinetic problems of future NASA missions. I—Earth entries
,”
J. Thermophys. Heat Transfer
7
(
3
),
385
(
1993
).
You do not currently have access to this content.