In this paper, the basic ideas underlying the Direct Simulation Monte Carlo (DSMC) method are examined and a novel nonhomogeneous N-particle kinetic equation describing the randomized mathematical model of DSMC is derived. It is shown that different collision-partner selection schemes, including No-Time-Counter (NTC) and Bernoulli-trials schemes, are approximations of the general transition operator of the randomized model. The popular collision-partner selection schemes, represented by the standard NTC and Bernoulli-trials approximations of the general transition operator, represented by Simplified Bernoulli-trials and Generalized Bernoulli-trials schemes, are tested on the one-dimensional rarefied gas heat transfer problem against conditions of two approximation limits: first, leading to the Boltzmann equation and, second, leading to the novel N-particle kinetic one.

1.
G. A.
Bird
, “
Approach to translational equilibrium in a rigid sphere gas
,”
Phys. Fluids
6
,
1518
1519
(
1963
).
2.
G. A.
Bird
,
Molecular Gas Dynamics
(
Clarendon Press
,
Oxford
,
1976
).
3.
G. A.
Bird
, “
Direct simulation and Boltzmann equation
,”
Phys. Fluids
13
,
2676
(
1970
).
4.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford
,
1994
).
5.
G. A.
Bird
,
The DSMC Method, Version 1
, 1st ed. (
Create Space Independent Publishing Platform
,
2013
).
6.
M. S.
Ivanov
and
S. V.
Rogasinskii
, “
Theoretical analysis of traditional and modern schemes of the DSMC method
,” in
Proceedings 17th International Symposium on Rarefied Gas Dynamics
(
VCH
,
1991
), pp.
629
642
.
7.
K.
Koura
, “
Null-collision technique in the direct-simulation Monte-Carlo method
,”
Phys. Fluids
29
,
3509
3511
(
1986
).
8.
E.
Roohi
and
S.
Stefanov
, “
Collision partner selection schemes in DSMC: From micro/nano flows to hypersonic flows
,”
Phys. Rep.
656
,
1
38
(
2016
).
9.
W.
Wagner
, “
A convergence proof for Bird direct simulation Monte-Carlo method for the Boltzmann-equation
,”
J. Stat. Phys.
66
,
1011
1044
(
1992
).
10.
K.
Nanbu
, “
Direct simulation scheme derived from the Boltzmann-equation. 1. Monocomponent gases
,”
J. Phys. Soc. Jpn.
49
,
2042
2049
(
1980
).
11.
H.
Babovsky
and
H.
Neunzert
, “
On a simulation scheme for the Boltzmann equation
,”
Math. Methods Appl. Sci.
8
,
223
233
(
1986
).
12.
H.
Babovsky
and
R.
Illner
, “
A convergence proof for Nanbu simulation method for the full Boltzmann-equation
,”
SIAM J. Numer. Anal.
26
,
45
65
(
1989
).
13.
S.
Stefanov
,
V.
Roussinov
, and
C.
Cercignani
, “
Rayleigh-Benard flow of a rarefied gas and its attractors. I. Convection regime
,”
Phys. Fluids
14
,
2255
2269
(
Jul 2002
).
14.
S.
Stefanov
,
V.
Roussinov
, and
C.
Cercignani
, “
Rayleigh-Benard flow of a rarefied gas and its attractors. II. Chaotic and periodic convective regimes
,”
Phys. Fluids
14
,
2270
2288
(
2002
).
15.
S.
Stefanov
,
V.
Roussinov
, and
C.
Cercignani
, “
Rayleigh-Benard flow of a rarefied gas and its attractors. III. Three-dimensional computer simulations
,”
Phys. Fluids
19
,
124101
(
2007
).
16.
M. A.
Gallis
,
N. P.
Bitter
,
T. P.
Koehler
,
J. R.
Torczynski
,
S. J.
Plimpton
, and
G.
Papadakis
, “
Molecular-level simulations of turbulence and its decay
,”
Phys. Rev. Lett.
118
,
064501
(
2017
).
17.
M. A.
Gallis
,
J. R.
Torczynski
,
N. P.
Bitter
,
T. P.
Koehler
,
S. J.
Plimpton
, and
G.
Papadakis
, “
Gas-kinetic simulation of sustained turbulence in minimal Couette flow
,”
Phys. Rev. Fluids
3
,
071402
(
2018
).
18.
S. K.
Stefanov
,
I. D.
Boyd
, and
C. P.
Cai
, “
Monte Carlo analysis of macroscopic fluctuations in a rarefied hypersonic flow around a cylinder
,”
Phys. Fluids
12
,
1226
1239
(
2000
).
19.
D.
Bruno
,
A.
Frezzotti
, and
G. P.
Ghiroldi
, “
Rayleigh–Brillouin scattering in molecular oxygen by CT-DSMC simulations
,”
Eur. J. Mech. B: Fluids
64
,
8
16
(
2017
).
20.
D. R.
Ladiges
,
A. J.
Nonaka
,
J. B.
Bell
, and
A. L.
Garcia
, “
On the suppression and distortion of non-equilibrium fluctuations by transpiration
,”
Phys. Fluids
31
,
052002
(
2019
).
21.
C.
Cercignani
,
The Boltzmann Equation and its Application
(
Springer
,
1988
).
22.
M.
Kac
,
Probability and Related Topics in Physical Sciences
(
Interscience Publishers
,
New York
,
1959
).
23.
S. N.
Lebedev
,
S. A.
Denisik
,
Yu. G.
Malama
, and
A. I.
Osipov
, “
Use of the Monte Carlo method in solution of gas kinetics problems
,”
Combust., Explos. Shock Waves
8
,
265
278
(
1972
).
24.
O. M.
Belotserkovskii
and
V. E.
Yanitskii
, “
The statistical particles-in-cells method for solving rarefied gas dynamics problems
,”
USSR Comput. Math. Math. Phys.
15
,
101
114
(
1975
).
25.
V. E.
Yanitskiy
, “
Operator approach to direct Monte-Carlo simulation theory in rarefied-gas dynamics
,” in
Rarefied Gas Dynamics
(
VCH
,
Aahen, Germany
,
1991
), pp.
770
777
.
26.
V. E.
Yanitskii
, “
Stochastic model of a Boltzmann gas and its numerical realization
,” in
Modern Problems in Computational Aerohydrodynamics
, edited by
PICAA Dorodnicyn
(
CRC Press
,
Boca Raton, Ann Arbor, London
,
1992
), pp.
339
355
.
27.
S. K.
Stefanov
, “
On DSMC calculations of rarefied gas flows with small number of particles in cells
,”
SIAM J. Sci. Comput.
33
,
677
702
(
2011
).
28.
S. K.
Stefanov
, “
Particle Monte Carlo algorithms with small number of particles in grid cells
,”
Numer. Methods Appl.
6046
,
110
117
(
2011
).
29.
S.
Stefanov
, “
DSMC collision algorithms based on Kac stochastic model
,”
AIP Conf. Proc.
1501
,
609
614
(
2012
).
30.
E.
Roohi
,
S.
Stefanov
,
A.
Shoja-Sani
, and
H.
Ejraei
, “
A generalized form of the Bernoulli trial collision scheme in DSMC: Derivation and evaluation
,”
J. Comput. Phys.
354
,
476
492
(
2018
).
31.
A.
Amiri-Jaghargh
,
E.
Roohi
,
H.
Niazmand
, and
S.
Stefanov
, “
DSMC simulation of low Knudsen micro/nanoflows using small number of particles per cells
,”
J. Heat Transfer
135
,
101008
(
2013
).
32.
A.
Amiri-Jaghargh
,
E.
Roohi
,
S.
Stefanov
,
H.
Nami
, and
H.
Niazmand
, “
DSMC simulation of micro/nano flows using SBT–TAS technique
,”
Comput. Fluids
102
,
266
276
(
2014
).
33.
B.
Goshayeshi
,
E.
Roohi
, and
S.
Stefanov
, “
DSMC simulation of hypersonic flows using an improved SBT-TAS technique
,”
J. Comput. Phys.
303
,
28
44
(
2015
).
34.
B.
Goshayeshi
,
E.
Roohi
, and
S.
Stefanov
, “
A novel simplified Bernoulli trials collision scheme in the direct simulation Monte Carlo with intelligence over particle distances
,”
Phys. Fluids
27
,
107104
(
2015
).
35.
E.
Taheri
and
E.
Roohi
, “
Evaluation of the simplified Bernoulli trial collision algorithm in treating rarefied nano-Fourier flow
,”
Modares Mech. Eng.
16
,
113
122
(
2016
).
36.
E.
Taheri
,
E.
Roohi
, and
S.
Stefanov
, “
On the convergence of the simplified Bernoulli trial collision scheme in rarefied Fourier flow
,”
Phys. Fluids
29
,
062003
(
2017
).
37.
J. H.
Ferziger
and
H. G.
Kaper
,
Mathematical Theory of Transport Processes in Gases
(
North-Holland Publishing Company
,
Amsterdam, London
,
1972
).
38.
Y.
Sone
,
Molecular Gas Dynamics: Theory, Techniques, and Applications
(
Springer
,
2007
).
39.
S.
Kamath
,
J. T.
Padding
,
K. A.
Buist
, and
J. A. M.
Kuipers
, “
Stochastic DSMC method for dense bubbly flows: Methodology
,”
Chem. Eng. Sci.
176
,
454
475
(
2018
).
40.
M.
Krook
and
T. T.
Wu
, “
Formation of Maxwellian tails
,”
Phys. Rev. Lett.
36
,
1107
1109
(
1976
).
41.
A. V.
Bobylev
, “
The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules
,”
Sov. Sci. Rev. C., Math. Phys.
7
,
111
233
(
1988
).
42.
K.
Sagara
and
S.
Tsuge
, “
A bimodal Maxwellian distribution as the equilibrium solution of the 2-particle regime
,”
Phys. Fluids
25
,
1970
1977
(
1982
).
43.
M.
Buren
and
Y. C.
Zhao
, “
An exact solution to the two-particle Boltzmann equation system for Maxwell gases
,”
Commun. Theor. Phys.
58
,
565
568
(
2012
).
44.
M. A.
Leontovich
, “
The master equations of gas kinetic theory from viewpoint of stochastic processes
,”
Zh. Eksp. Teor. Fiz.
5
,
211
231
(
1935
).
45.
I.
Prigogine
,
Non-Equilibrium Statistical Mechanics
(
John Wiley & Sons
,
New York, London
,
1962
).
46.
N. A.
Nurlybaev
and
V. E.
Yanitskii
, “
Discrete statistical models of the Boltzmann equation
,” in
Discrete Nonlinear Models of the Boltzmann Equation
, edited by
U.
Sultangasin
(
Nauka
,
Moscow
,
1987
), pp.
171
191
.
47.
F.
Sharipov
and
J. L.
Strapasson
, “
Ab initio simulation of transport phenomena in rarefied gases
,”
Phys. Rev. E
86
,
031130
(
2012
).
48.
M. S.
Ivanov
and
S. V.
Rogasinsky
, “
Analysis of numerical techniques of the direct simulation Monte-Carlo method in the rarefied-gas dynamics
,”
Sov. J. Numer. Anal. Math. Modell.
3
,
453
465
(
1988
).
49.
G.
Strang
, “
On construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
,
506
(
1968
).
50.
T.
Ohwada
, “
Higher order time integration of spatially nonhomogeneous Boltzmann equation: Deterministic and stochastic computations
,”
Transp. Theory Stat. Phys.
29
,
495
508
(
2000
).
51.
A.
Venkattraman
,
A. A.
Alexeenko
,
M. A.
Gallis
, and
M. S.
Ivanov
, “
A comparative study of no-time-counter and majorant collision frequency numerical schemes in DSMC
,”
AIP Conf. Proc.
1501
,
489
(
2012
).
52.
H.
Akhlaghi
,
E.
Roohi
, and
S.
Stefanov
, “
On the consequences of successively repeated collisions in no-time-counter collision scheme in DSMC
,”
Comput. Fluids
161
,
23
32
(
2018
).
53.
D. J.
Rader
,
M. A.
Gallis
,
J. R.
Torczynski
, and
W.
Wagner
, “
Direct simulation Monte Carlo convergence behavior of the hard-sphere-gas thermal conductivity for Fourier heat flow
,”
Phys. Fluids
18
,
077102
(
2006
).
54.
M. A.
Gallis
,
J. R.
Torczynski
,
D. J.
Rader
, and
G. A.
Bird
, “
Convergence behavior of a new DSMC algorithm
,”
J. Comput. Phys.
228
,
4532
4548
(
2009
).
55.
M. A.
Gallis
and
J. R.
Torczynski
, “
Effect of collision-partner selection schemes on the accuracy and efficiency of the direct simulation Monte Carlo method
,”
Int. J. Numer. Methods Fluids
67
,
1057
1072
(
2011
).
56.
J. M.
Burt
,
E.
Josyula
, and
I. D.
Boyd
, “
Novel Cartesian implementation of the direct simulation Monte Carlo method
,”
J. Thermophys. Heat Transfer
26
,
258
270
(
2012
).
57.
M.
Vargas
,
G.
Tatsios
,
D.
Valougeorgis
, and
S.
Stefanov
, “
Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls
,”
Phys. Fluids
26
,
057101
(
2014
).
58.
H.
Akhlaghi
,
E.
Roohi
, and
S.
Stefanov
, “
Ballistic and collisional flow contributions to anti-Fourier heat transfer in rarefied cavity flow
,”
Sci. Rep.
8
,
13533
(
2018
).
You do not currently have access to this content.