The design of large wind turbines requires a comprehensive and accurate analysis of the dynamic loads of airfoils, so it is of great importance to study the dynamic aerodynamic characteristics of a yaw-oscillating airfoil. In this paper, using “electronic cam” technology and synchronous acquisition of dynamic data, a wind tunnel test of yaw oscillation for the airfoil dynamic “sweep effect” is carried out for the first time, providing previously missing lateral dynamic test data. The results show that the aerodynamic curves of the yaw-oscillating airfoil have an obvious hysteresis effect, induced mainly by a periodic pressure fluctuation on the airfoil suction surface, and the aerodynamic hysteresis characteristics are enhanced with increasing oscillation frequency, initial angle of attack, and amplitude. The hysteresis loops of the lift and pressure drag, as a function of yaw angle, follows a “W” shape, the hysteresis loop of the pitching moment follows an “M” shape, and the hysteresis loop of the unsteady lift increment follows an “∞” shape. The aerodynamic force of the airfoil under negative stroke is higher than that under positive stroke, and the aerodynamic coefficients decrease clearly with increasing oscillation frequency under positive stroke. The pressure fluctuation on the airfoil surface is due to a periodic generation, development, movement, breakdown, dissipation, and reconstruction of shear layer vortices, leading edge vortices, trailing edge vortices, and dynamic separation vortices. The dynamic aerodynamic hysteresis of the yaw-oscillating airfoil occurs essentially because of the dynamic interaction between vortex and vortex, or vortex and airfoil surface boundary layer.

1.
Z.
Li
and
D.
He
, “
Reviews of fluid dynamics researches in wind energy engineering
,”
Adv. Mech.
43
(
5
),
472
525
(
2013
) (in Chinese).
2.
M. O. L.
Hansen
,
Aerodynamics of Wind Turbines
(
Earthscan
,
2008
).
3.
A. C.
Hansen
and
C. P.
Butterfield
, “
Aerodynamics of horizontal axis wind turbines
,”
Annu. Rev. Fluid Mech.
25
,
115
149
(
1993
).
4.
A. G.
Paker
and
J.
Bicknell
, “
Some measurements on dynamic stall
,”
J. Aircr.
11
,
371
374
(
1974
).
5.
A.
Björck
, Dynamic Stall and Three-dimensional Effects: Final Report for the EC DGXII Joule II Project JOU2-CT93-0345,
Flygteksnika Försöksanstalten
,
1996
.
6.
J. M.
Walker
,
H. E.
Helin
, and
J. H.
Strickland
, “
An experimental investigation of an airfoil undergoing large-amplitude pitching motions
,”
AIAA J.
23
(
8
),
1141
1142
(
1985
).
7.
D.
Favier
,
J.
Belledue
, and
C.
Maresca
, “
Influence of coupling incidence and velocity variations on the airfoil dynamic stall
,” in
Proceedings of the AHS 48th Annual Forum, Washington, D.C.
(
American Helicopter Society
,
1992
), Vol. 2, pp.
1385
1407
.
8.
A. L.
Babbitt
,
J. A.
Strike
,
C.
Mertes
,
M.
Hind
,
M.
Singh
, and
J.
Naughton
, “
Dynamic characterization of a wind turbine blade section
,” in
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2011
), Vol. 350.
9.
R. F.
Ramsay
,
M. J.
Hoffman
, and
G. M.
Gregorek
, “
Effects of grit roughness and pitch oscillations on the S809 airfoil
,” Technical Report No. NREL/TP-442-7817,
Office of Scientific & Technical Information
,
1996
.
10.
J.
Ma
,
J.
Xu
,
R.
Guo
, and
K.
Zhang
, “
PIV experimental study of a 2-D wind turbine airfoil under different Re number
,” in
8th Annual International Energy Conversion Engineering Conference
(
AIAA
,
2010
), Vol. 6513.
11.
L.
Chen
,
J.
Wu
,
C.
Zhou
,
S.
Hsu
, and
B.
Cheng
, “
Unsteady aerodynamics of a pitching-flapping-perturbed revolving wing at low Reynolds number
,”
Phys. Fluids
30
,
051903
(
2018
).
12.
K.
Gharali
,
E.
Gharaei
, and
M.
Soltani
, “
Reduced frequency effects on combined oscillations, angle of attack and free stream oscillations, for a wind turbine blade element
,”
Renewable Energy
115
,
252
259
(
2018
).
13.
A. H.
Lind
and
A. R.
Jones
, “
Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section
,”
Phys. Fluids
28
,
077102
(
2016
).
14.
M.
Costes
,
F.
Richez
,
A. L.
Pape
, and
R.
Gavériaux
, “
Numerical investigation of three-dimensional effects during dynamic stall
,”
Aerosp. Sci. Technol.
47
,
216
237
(
2015
).
15.
J. G.
Leishman
, “
Modeling sweep of leading edge thrust phenomena
,”
J. Aircr.
17
,
890
897
(
1980
).
16.
U.
Leiss
, “
Unsteady sweep—A key to simulation of three dimensional rotor blade airloads
,” in
11th European Rotorcraft Forum, London, England
(
Vertica
,
1986
), Vol. 10(3-4), pp.
341
351
.
17.
J.
Yang
,
B.
Ganesh
, and
N.
Komerath
, “
Radial flow measurements downstream of forced dynamic separation on a rotor blade
,” in
36th AIAA Fluid Dynamics Conference and Exhibit
(
AIAA
,
2006
), Vol. 3377.
18.
V.
Raghav
and
N.
Komerath
, “
Advance ratio effects on the flow structure and unsteadiness of the dynamic-stall vortex of a rotating blade in steady forward flight
,”
Phys. Fluids
27
,
027101
(
2015
).
19.
M.
Melius
,
R. B.
Cal
, and
K.
Mulleners
, “
Dynamic stall of an experimental wind turbine blade
,”
Phys. Fluids
28
,
034103
(
2016
).
20.
J.
Henkner
and
H.
Ranke
, “
Unsteady boundary layer separation on swept and unswept wings in sinusoidal dynamic stall motion
,” in
New Results in Numerical and Experimental Fluid Mechanics
(
Vieweg+Teubner Verlag
,
Wiesbaden
,
1997
), pp.
181
188
.
21.
K.
Salari
and
P.
Roache
, “
The influence of sweep on dynamic stall produced by a rapidly pitching wing
,” in
28th Aerospace Sciences Meeting
(
AIAA
,
1990
), Vol. 581.
22.
P. F.
Lorber
, “
Dynamic stall of sinusoidally oscillating three-dimensional swept and unswept wings in compressible flow
,” in
Proceedings of AHS 48th Annual Forum, Washington, D.C.
(
American Helicopter Society
,
1992
), Vol. 2, pp.
1307
1322
.
23.
A. R.
Jones
,
A.
Medina
,
H.
Spooner
, and
K.
Mulleners
, “
Characterizing a burst leading-edge vortex on a rotating flat plate wing
,”
Exp. Fluids
57
,
52
(
2016
).
24.
C. P.
Butterfield
,
W. P.
Musial
, and
D. A.
Simms
, Combined experiment phase I Final Report No. NREL/TP-257-4655, Golden, Colorado,
1992
.
25.
A.
Spentzos
,
G. N.
Barakos
,
K. J.
Badcock
,
B. E.
Richard
 et al, “
Computational fluid dynamics study of three-dimensional dynamic stall of various planform shapes
,”
J. Aircr.
44
,
1118
1128
(
2007
).
26.
A. J.
Buchner
,
D.
Honnery
, and
J.
Soria
, “
Stability and three-dimensional evolution of a transitional dynamic stall vortex
,”
J. Fluid Mech.
823
,
166
197
(
2017
).
27.
C. A.
Ozen
and
D.
Rockwell
, “
Three-dimensional vortex structure on a rotating wing
,”
J. Fluid Mech.
707
,
541
550
(
2012
).
28.
Z. R.
Carr
,
C.
Chen
, and
M. J.
Ringuette
, “
Finite-span rotating wings: Three-dimensional vortex formation and variations with aspect ratio
,”
Exp. Fluids
54
,
1444
(
2013
).
29.
M.
Bross
,
C. A.
Ozen
, and
D.
Rockwell
, “
Flow structure on a rotating wing: Effect of steady incident flow
,”
Phys. Fluids
25
,
081901
(
2013
).
30.
R. J.
Bomphrey
,
T.
Nakata
,
N.
Phillips
, and
S. M.
Walker
, “
Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight
,”
Nature
544
,
92
95
(
2017
).
31.
J.
Fu
,
W.
Shyy
, and
H.
Qiu
, “
Effects of aspect ratio on vortex dynamics of a rotating wing
,”
AIAA J.
55
,
4074
(
2017
).
32.
D. J.
Garmann
,
M. R.
Visbal
, and
P. D.
Orkwis
, “
Three-dimensional flow structure and aerodynamic loading on a revolving wing
,”
Phys. Fluids
25
,
034101
(
2013
).
33.
V. I.
Borodulin
,
A. V.
Ivanov
, and
Y. S.
Kachanov
, “
Swept-wing boundary-layer transition at various external perturbations: Scenarios, criteria, and problems of prediction
,”
Phys. Fluids
29
,
094101
(
2017
).
You do not currently have access to this content.