The inertial subrange of turbulence in a density stratified environment is the transition from internal waves to isotropic turbulence, but it is unclear how to interpret its extension to anisotropic “stratified” turbulence. Knowledge about stratified turbulence is relevant for the dispersal of suspended matter in geophysical flows, such as in most of the ocean. For studying internal-wave-induced ocean-turbulence, moored high-resolution temperature (T-)sensors are used. Spectra from observations on episodic quasiconvective internal wave breaking above a steep slope of large seamount Josephine in the Northeast-Atlantic demonstrate an inertial subrange that can be separated in two parts: A large-scale part with relatively coherent portions adjacent to less coherent portions and a small-scale part that is smoothly continuous (to within standard error). The separation is close to the Ozmidov frequency and coincides with the transition from anisotropic/quasideterministic stratified turbulence to isotropic/stochastic inertial convective motions as inferred from a comparison of vertical and horizontal cospectra. These observations contrast with T-sensor observations of shear-dominated internal wave breaking in an equally turbulent environment above the slope of a small Mid-Atlantic ridge-crest, which demonstrate a stochastic inertial subrange throughout.

1.
Alisse
,
J. R.
and
Sidi
,
C.
, “
Experimental probability density functions of small-scale fluctuations in the stably stratified atmosphere
,”
J. Fluid Mech.
402
,
137
162
(
2000
).
2.
Augier
,
P.
,
Billant
,
P.
, and
Chomaz
,
J.-M.
, “
Stratified turbulence forced with columnar dipoles: Numerical study
,”
J. Fluid Mech.
769
,
403
443
(
2015
).
3.
Bendat
,
J. S.
and
Piersol
,
A. G.
,
Random Data: Analysis and Measurement Procedures
(
John Wiley
,
New York
,
1986
), p.
566
.
4.
Billant
,
P.
and
Chomaz
,
J.-M.
, “
Self-similarity of strongly stratified inviscid flows
,”
Phys. Fluids
13
,
1645
1651
(
2001
).
5.
Bouruet-Aubertot
,
P.
,
van Haren
,
H.
, and
LeLong
,
M.-P.
, “
Stratified inertial subrange inferred from in situ measurements in the bottom boundary layer of rockall channel
,”
J. Phys. Oceanogr.
40
,
2401
2417
(
2010
).
6.
Corrsin
,
S.
, “
On the spectrum of isotropic temperature fluctuations in an isotropic turbulence
,”
J. Appl. Phys.
22
,
469
473
(
1951
).
7.
Davidson
,
P. A.
,
Turbulence in Rotating, Stratified and Electrically Conducting Fluids
(
Cambridge University Press
,
Cambridge UK
,
2013
), p.
681
.
8.
Dillon
,
T. M.
, “
Vertical overturns: A comparison of Thorpe and Ozmidov length scales
,”
J. Geophys. Res.
87
,
9601
9613
, https://doi.org/10.1029/jc087ic12p09601 (
1982
).
9.
Eriksen
,
C. C.
, “
Observations of internal wave reflection off sloping bottoms
,”
J. Geophys. Res.
87
,
525
538
, https://doi.org/10.1029/jc087ic01p00525 (
1982
).
10.
Frehlich
,
R.
,
Meillier
,
Y.
, and
Jensen
,
M. L.
, “
Measurements of boundary layer profiles with in situ sensors and Doppler lidar
,”
J. Atmos. Oceanic Technol.
25
,
1328
1340
(
2008
).
11.
Gargett
,
A. E.
, “
The scaling of turbulence in the presence of stable stratification
,”
J. Geophys. Res.
93
,
5021
5036
, https://doi.org/10.1029/jc093ic05p05021 (
1988
).
12.
Gargett
,
A. E.
,
Osborn
,
T. R.
, and
Nasmyth
,
P. W.
, “
Local isotropy and the decay of turbulence in a stratified fluid
,”
J. Fluid Mech.
144
,
231
280
(
1984
).
13.
Garrett
,
C. J. R.
and
Munk
,
W. H.
, “
Space-time scales of internal waves
,”
Geophys. Fluid Dyn.
3
,
225
264
(
1972
).
14.
Gregg
,
M. C.
, “
Variations in the intensity of small-scale mixing in the main thermocline
,”
J. Phys. Oceanogr.
7
,
436
454
(
1977
).
15.
Gregg
,
M. C.
, “
Scaling turbulent dissipation in the thermocline
,”
J. Geophys. Res.
94
,
9686
9698
, https://doi.org/10.1029/jc094ic07p09686 (
1989
).
16.
IOC
,
SCOR
, and
IAPSO
, The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO
,
Paris, France
,
2010
, p.
196
.
17.
Kimura
,
Y.
and
Herring
,
J. R.
, “
Energy spectra of stably stratified turbulence
,”
J. Fluid Mech.
698
,
19
50
(
2012
).
18.
Kolmogorov
,
A. N.
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
301
305
(
1941
).
19.
Li
,
S.
and
Li
,
H.
, Parallel AMR code for compressible MHD and HD equations, T-7, MS B284,
Theoretical Division, Los Alamos National Laboratory
, https://es.scribd.com/document/74751081/amrmhd; accessed 4 April 2019,
2006
.
20.
Lilly
,
D. K.
, “
Stratified turbulence and the mesoscale variability of the atmosphere
,”
J. Atmos. Sci.
40
,
749
761
(
1983
).
21.
Maffioli
,
A.
, “
Vertical spectra of stratified turbulence at large horizontal scales
,”
Phys. Rev. Fluids
2
,
104802
(
2017
).
22.
Matsumoto
,
Y.
and
Hoshino
,
M.
, “
Onset of turbulence by a Kelvin-Helmholtz vortex
,”
Geophys. Res. Lett.
31
,
L02807
, https://doi.org/10.1029/2003GL018195 (
2004
).
23.
Munk
,
W. H.
, “
Internal wave spectra at the buoyant and inertial frequencies
,”
J. Phys. Oceanogr.
10
,
1718
1728
(
1980
).
24.
Oakey
,
N. S.
, “
Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements
,”
J. Phys. Oceanogr.
12
,
256
271
(
1982
).
25.
Obukhov
,
A. M.
, “
Structure of the temperature field in a turbulent flow
,”
Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz.
13
,
58
69
(
1949
).
26.
Osborn
,
T. R.
, “
Estimates of the local rate of vertical diffusion from dissipation measurements
,”
J. Phys. Oceanogr.
10
,
83
89
(
1980
).
27.
Ozmidov
,
R. V.
, “
About some pecularities of the energy spectrum of oceanic turbulence
,”
Dokl. Akad. Nauk SSSR
161
,
828
831
(
1965
).
28.
Phillips
,
O. M.
, “
On spectra measured in an undulating layered medium
,”
J. Phys. Oceanogr.
1
,
1
6
(
1971
).
29.
Polzin
,
K. L.
,
Toole
,
J. M.
,
Ledwell
,
J. R.
, and
Schmitt
,
R. W.
, “
Spatial variability of turbulent mixing in the abyssal ocean
,”
Science
276
,
93
96
(
1997
).
30.
Riley
,
J. J.
and
Lindborg
,
E.
, “
Stratified turbulence: A possible interpretation of some geophysical turbulence measurements
,”
J. Atmos. Sci.
65
,
2416
2424
(
2008
).
31.
Stevens
,
R. J. A. M.
,
Lohse
,
D.
, and
Verzicco
,
R.
, “
Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection
,”
J. Fluid Mech.
688
,
31
43
(
2011
).
32.
Tennekes
,
H.
and
Lumley
,
J. L.
,
A First Course in Turbulence
(
MIT Press
,
Cambridge
,
1972
), p.
300
.
33.
Thorpe
,
S. A.
, “
Turbulence and mixing in a Scottish loch
,”
Philos. Trans. R. Soc., A
286
,
125
181
(
1977
).
34.
Thorpe
,
S. A.
, “
Transitional phenomena and the development of turbulence in stratified fluids: A review
,”
J. Geophys. Res.
92
,
5231
5248
, https://doi.org/10.1029/jc092ic05p05231 (
1987
).
35.
van Haren
,
H.
, “
Philosophy and application of high-resolution temperature sensors for stratified waters
,”
Sensors
18
,
3184
(
2018
).
36.
van Haren
,
H.
,
Cimatoribus
,
A. A.
,
Cyr
,
F.
, and
Gostiaux
,
L.
, “
Insights from a 3-D temperature sensors mooring on stratified ocean turbulence
,”
Geophys. Res. Lett.
43
,
4483
4489
, https://doi.org/10.1002/2016GL068032 (
2016
).
37.
van Haren
,
H.
and
Gostiaux
,
L.
, “
High-resolution open-ocean temperature spectra
,”
J. Geophys. Res.
114
,
C05005
, https://doi.org/10.1029/2008JC004967 (
2009
).
38.
van Haren
,
H.
,
Hanz
,
U.
,
de Stigter
,
H.
,
Mienis
,
F.
, and
Duineveld
,
G.
, “
Internal wave turbulence at a biologically rich Mid-Atlantic seamount
,”
PLoS One
12
(
12
),
e0189720
(
2017
).
39.
van Haren
,
H.
,
Maas
,
L.
,
Zimmerman
,
J. T. F.
,
Ridderinkhof
,
H.
, and
Malschaert
,
H.
, “
Strong inertial currents and marginal internal wave stability in the central North Sea
,”
Geophys. Res. Lett.
26
,
2993
2996
, (
1999
).
40.
Waite
,
M. L.
, “
Stratified turbulence at the buoyancy scale
,”
Phys. Fluids
23
,
066602
(
2011
).
41.
Warhaft
,
Z.
, “
Passive scalars in turbulent flows
,”
Annu. Rev. Fluid Mech.
32
,
203
240
(
2000
).
You do not currently have access to this content.