In 1963, G. A. Bird published a research note on his investigation of a rigid sphere gas reaching translational equilibrium using a Monte Carlo type method. Since then, the method has been developed into a primary workhorse to computationally solve the Boltzmann kinetic equation. As it is increasingly applied to challenging problems in the real world, verification studies of the method have become a critical issue. In this paper, we review previous studies on this challenging subject and present a perspective on a convergence analysis of the direct simulation Monte Carlo (DSMC) method and solution verification. During this process, a verification method based on the physical laws of conservation is studied in depth. In particular, a convergence history plot on all three types of computational errors—decomposition, statistical, and round-off—is presented for two benchmark problems. Finally, future research topics to maximize the full potential of the DSMC method, pioneered by the late G. A. Bird, are suggested.

1.
G. A.
Bird
, “
Approach to translational equilibrium in a rigid sphere gas
,”
Phys. Fluids
6
,
1518
(
1963
).
2.
G. A.
Bird
,
Molecular Gas Dynamics
(
Clarendon
,
1976
).
3.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford Science
,
1994
).
4.
R.
Zakeri
,
R. K.
Moghadam
, and
M.
Mani
, “
New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow
,”
Phys. Fluids
29
,
047105
(
2017
).
5.
O.
Tumuklu
,
V.
Theofilis
, and
D. A.
Levin
, “
On the unsteadiness of shock–laminar boundary layer interactions of hypersonic flows over a double cone
,”
Phys. Fluids
30
,
106111
(
2018
).
6.
A. M.
Mahdavi
and
E.
Roohi
, “
Investigation of cold-to-hot transfer and thermal separation zone through nano step geometries
,”
Phys. Fluids
27
,
072002
(
2015
).
7.
P.
Wang
,
W.
Su
, and
Y.
Zhang
, “
Oscillatory rarefied gas flow inside a three dimensional rectangular cavity
,”
Phys. Fluids
30
,
102002
(
2018
).
8.
M. A.
Gallis
,
T. P.
Koehler
,
J. R.
Torczynski
, and
S. J.
Plimpton
, “
Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability
,”
Phys. Fluids
27
,
084105
(
2015
).
9.
M. A.
Gallis
,
N.
Bitter
,
T.
Koehler
,
J.
Torczynski
,
S.
Plimpton
, and
G.
Papadakis
, “
Molecular-level simulations of turbulence and its decay
,”
Phys. Rev. Lett.
118
,
064501
(
2017
).
10.
W. L.
Oberkampf
and
C. J.
Roy
,
Verification and Validation in Scientific Computing
(
Cambridge University Press
,
2010
).
11.
R. S.
Myong
, “
Thermodynamically consistent hydrodynamic computational models for high-Knudsen-number gas flows
,”
Phys. Fluids
11
,
2788
(
1999
).
12.
N. T. P.
Le
,
H.
Xiao
, and
R. S.
Myong
, “
A triangular discontinuous Galerkin method for non-Newtonian implicit constitutive models of rarefied and microscale gases
,”
J. Comput. Phys.
273
,
160
(
2014
).
13.
A.
Rana
,
R.
Ravichandran
,
J. H.
Park
, and
R. S.
Myong
, “
Microscopic molecular dynamics characterization of the second-order non-Navier-Fourier constitutive laws in the Poiseuille gas flow
,”
Phys. Fluids
28
,
082003
(
2016
).
14.
K.
Nanbu
, “
Direct simulation scheme derived from the Boltzmann equation. II. Multicomponent gas mixtures
,”
J. Phys. Soc. Jpn.
49
,
2050
(
1980
).
15.
K.
Nanbu
, “
Interrelations between various direct simulation methods for solving the Boltzmann equation
,”
J. Phys. Soc. Jpn.
52
,
3382
(
1983
).
16.
H.
Babovsky
and
R.
Illner
, “
A convergence proof for Nanbu’s simulation method for the full Boltzmann equation
,”
SIAM J. Numer. Anal.
26
,
45
(
1989
).
17.
W.
Wagner
, “
A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation
,”
J. Stat. Phys.
66
,
1011
(
1992
).
18.
E.
Meiburg
, “
Comparison of the molecular dynamics method and the direct simulation Monte Carlo technique for flows around simple geometries
,”
Phys. Fluids
29
,
3107
(
1986
).
19.
F. J.
Alexander
,
A. L.
Garcia
, and
B. J.
Alder
, “
Cell size dependence of transport coefficients in stochastic particle algorithms
,”
Phys. Fluids
10
,
1540
(
1998
).
20.
A. L.
Garcia
and
W.
Wagner
, “
Time step truncation error in direct simulation Monte Carlo
,”
Phys. Fluids
12
,
2621
(
2000
).
21.
N. G.
Hadjiconstantinou
, “
Analysis of discretization in the direct simulation Monte Carlo
,”
Phys. Fluids
12
,
2634
(
2000
).
22.
M. A.
Gallis
,
J.
Torczynski
, and
D.
Rader
, “
Molecular gas dynamics observations of Chapman-Enskog behavior and departures therefrom in nonequilibrium gases
,”
Phys. Rev. E
69
,
042201
(
2004
).
23.
G. A.
Bird
, “
Sophisticated DSMC
,” in
Notes for DSMC07
(
Santa Fe
,
2007
).
24.
G. A.
Bird
,
M. A.
Gallis
,
J.
Torczynski
, and
D.
Rader
, “
Accuracy and efficiency of the sophisticated direct simulation Monte Carlo algorithm for simulating noncontinuum gas flows
,”
Phys. Fluids
21
,
017103
(
2009
).
25.
M. A.
Gallis
,
J.
Torczynski
,
D.
Rader
, and
G. A.
Bird
, “
Convergence behavior of a new DSMC algorithm
,”
J. Comput. Phys.
228
,
4532
(
2009
).
26.
J. M.
Burt
and
I. D.
Boyd
, “
Convergence detection in direct simulation Monte Carlo calculations for steady state flows
,”
Commun. Comput. Phys.
10
,
807
(
2011
).
27.
A.
Karchani
and
R. S.
Myong
, “
Convergence analysis of the direct simulation Monte Carlo based on the physical laws of conservation
,”
Comput. Fluids
115
,
98
(
2015
).
28.
E.
Taheri
,
E.
Roohi
, and
S.
Stefanov
, “
On the convergence of the simplified Bernoulli trial collision scheme in rarefied Fourier flow
,”
Phys. Fluids
29
,
062003
(
2017
).
29.
M. A.
Gallis
,
J.
Torczynski
,
D.
Rader
,
M.
Tij
, and
A.
Santos
, “
Normal solutions of the Boltzmann equation for highly nonequilibrium Fourier flow and Couette flow
,”
Phys. Fluids
18
,
017104
(
2006
).
30.
H.
Akhlaghi
,
E.
Roohi
, and
S.
Stefanov
, “
On the consequences of successively repeated collisions in no-time-counter collision scheme in DSMC
,”
Comput. Fluids
161
,
23
(
2018
).
31.
A. L.
Garcia
, “
Nonequilibrium fluctuations studied by a rarefied-gas simulation
,”
Phys. Rev. A
34
,
1454
(
1986
).
32.
M.
Fallavollita
,
D.
Baganoff
, and
J.
McDonald
, “
Reduction of simulation cost and error for particle simulations of rarefied flows
,”
J. Comput. Phys.
109
,
30
(
1993
).
33.
G.
Chen
and
I. D.
Boyd
, “
Statistical error analysis for the direct simulation Monte Carlo technique
,”
J. Comput. Phys.
126
,
434
(
1996
).
34.
S.
Rjasanow
,
T.
Schreiber
, and
W.
Wagner
, “
Reduction of the number of particles in the stochastic weighted particle method for the Boltzmann equation
,”
J. Comput. Phys.
145
,
382
(
1998
).
35.
N. G.
Hadjiconstantinou
,
A. L.
Garcia
,
M. Z.
Bazant
, and
G.
He
, “
Statistical error in particle simulations of hydrodynamic phenomena
,”
J. Comput. Phys.
187
,
274
(
2003
).
36.
H. M.
Cave
,
K. C.
Tseng
,
J. S.
Wu
,
M. C.
Jermy
,
J. C.
Huang
, and
S. P.
Krumdieck
, “
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method
,”
J. Comput. Phys.
227
,
6249
(
2008
).
37.
Q.
Sun
,
J.
Fan
, and
I. D.
Boyd
, “
Improved sampling techniques for the direct simulation Monte Carlo method
,”
Comput. Fluids
38
,
475
(
2009
).
38.
M. Y.
Plotnikov
and
E.
Shkarupa
, “
Estimation of the statistical error of the direct simulation Monte Carlo method
,”
Comput. Math. Math. Phys.
50
,
335
(
2010
).
39.
M. Y.
Plotnikov
and
E.
Shkarupa
, “
Some approaches to error analysis and optimization of the DSMC method
,”
Russ. J. Numer. Anal. Math. Modell.
25
,
147
(
2010
).
40.
M. Y.
Plotnikov
and
E.
Shkarupa
, “
Theoretical and numerical analysis of approaches to evaluation of statistical error of the DSMC method
,”
Comput. Fluids
105
,
251
(
2014
).
41.
M. Y.
Plotnikov
and
E. V.
Shkarupa
, “
Selection of sampling numerical parameters for the DSMC method
,”
Comput. Fluids
58
,
102
(
2012
).
42.
A.
Karchani
,
O.
Ejtehadi
, and
R. S.
Myong
, “
A probabilistic automatic steady state detection method for the direct simulation Monte Carlo
,”
Commun. Comput. Phys.
20
,
1183
(
2016
).
You do not currently have access to this content.