Two-dimensional magnetohydrodynamics, forced at (a) large length scales or (b) small length scales, display turbulent, but statistically steady, states with widely different statistical properties. We present a systematic, comparative study of these two cases (a) and (b) by using direct numerical simulations. We find that, in case (a), there is energy equipartition between the magnetic and velocity fields, whereas, in case (b), such equipartition does not exist. By computing various probability distribution functions, we show that case (a) displays extreme events that are much less common in case (b).

1.
D.
Biskamp
,
Magnetohydrodynamic Turbulence
(
Cambridge University Press
,
2003
).
2.
M. K.
Verma
, “
Statistical theory of magnetohydrodynamic turbulence: Recent results
,”
Phys. Rep.
401
(
5-6
),
229
380
(
2004
).
3.
U.
Frisch
,
Turbulence: The Legacy of A. N. Kolmogorov
(
Cambridge University Press
,
1995
).
4.
R.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
(
1967
).
5.
R.
Fjortoft
, “
On the changes in the spectral distribution of kinetic energy for twodimensional, nondivergent flow
,”
Tellus
5
(
3
),
225
(
1953
).
6.
G. K.
Batchelor
, “
Computation of the energy spectrum in homogeneous two-dimensional turbulence
,”
Phys. Fluids
12
,
II-233
(
1969
).
7.
C. E.
Leith
and
R. H.
Kraichnan
, “
Predictability of turbulent flows
,”
J. Atmos. Sci.
29
,
1041
(
1972
).
8.
R.
Pandit
 et al, “
An overview of the statistical properties of two-dimensional turbulence in fluids with particles, conducting fluids, fluids with polymer additives, binary-fluid mixtures, and superfluids
,”
Phys. Fluids
29
,
111112
(
2017
).
9.
U.
Frisch
,
A.
Pouquet
,
J.
Leorat
, and
A.
Mazure
, “
Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence
,”
J. Fluid Mech.
68
(
4
),
769
778
(
1975
).
10.
D.
Banerjee
and
R.
Pandit
, “
Statistics of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence
,”
Phys. Rev. E
90
,
013018
(
2014
).
11.
A.
Bistagnino
and
G.
Boffetta
, “
Lagrangian statistics in two-dimensional free turbulent convection
,”
New J. Phys.
10
,
075018
(
2008
).
12.
D.
Bernard
,
G.
Boffetta
,
A.
Celani
, and
G.
Falkovich
, “
Inverse turbulent cascades and conformally invariant curves
,”
Phys. Rev. Lett.
98
,
024501
(
2007
).
13.
L. M.
Smith
and
F.
Waleffe
, “
Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence
,”
Phys. Fluids
11
,
1608
(
1999
).
14.
A.
Gupta
,
P.
Perlekar
, and
R.
Pandit
, “
Two-dimensional homogeneous isotropic fluid turbulence with polymer additives
,”
Phys. Rev E
91
,
033013
(
2015
).
15.
A.
Alexakis
,
P. D.
Mininni
, and
A.
Pouquet
, “
On the inverse cascade of magnetic helicity
,”
Astrophys. J.
640
,
335
342
(
2006
).
16.
J.
Sommeria
and
R.
Moreau
, “
Why, how, and when MHD turbulence becomes two-dimensional
,”
J. Fluid Mech.
118
,
507
518
(
1982
).
17.
R. H.
Kraichnan
and
D.
Montgomery
, “
Two-dimensional turbulence
,”
Rep. Prog. Phys.
43
,
547
(
1980
).
18.
T. D.
Lee
, “
On some statistical properties of hydrodynamical and magneto-hydrodynamical fields
,”
Q. Appl. Math.
10
,
69
74
(
1952
).
19.
G.
Krstulovic
,
P. D.
Mininni
,
M. E.
Brachet
, and
A.
Pouquet
, “
Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
,”
Phys. Rev. E
79
,
056304
(
2009
).
20.
A. N.
Kolmogorov
, “
The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Akad. Nauk SSSR
30
,
299
303
(
1941
).
21.
U.
Frisch
,
S.
Kurien
,
R.
Pandit
,
W.
Pauls
,
S. S.
Ray
,
A.
Wirth
, and
J.-Z.
Zhu
, “
Hyperviscosity, Galerkin truncation, bottlenecks in turbulence
,”
Phys. Rev. Lett.
101
,
144501
(
2008
).
22.
U.
Frisch
,
S. S.
Ray
,
G.
Sahoo
,
D.
Banerjee
, and
R.
Pandit
, “
Real-space manifestations of bottlenecks in turbulence spectra
,”
Phys. Rev. Lett.
110
,
064501
(
2013
).
23.
J. D.
Gibbon
,
N.
Pal
,
A.
Gupta
, and
R.
Pandit
, “
Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations
,”
Phys. Rev. E
94
,
063103
(
2016
).
24.
D.
Biskamp
and
W. C.
Müller
, “
Scaling properties of three-dimensional isotropic magnetohydrodynamic turbulence
,”
Phys. Plasmas
7
,
4889
(
2000
).
25.
W.-C.
Müller
and
D.
Biskamp
, “
Scaling properties of three-dimensional magnetohydrodynamic turbulence
,”
Phys. Rev. Lett.
84
,
475
(
2000
).
26.
P. D.
Mininni
and
A.
Pouquet
, “
Energy spectra stemming from interactions of alfvén waves and turbulent eddies
,”
Phys. Rev. Lett.
99
,
254502
(
2007
).
27.
P. D.
Mininni
and
A.
Pouquet
, “
Finite dissipation and intermittency in magnetohydrodynamics
,”
Phys. Rev. E
80
,
025401(R)
(
2009
).
28.
G.
Sahoo
,
P.
Perlekar
, and
R.
Pandit
, “
Systematics of the magnetic-Prandtl-number dependence of homogeneous, isotropic magnetohydrodynamic turbulence
,”
New J. Phys.
13
,
013036
(
2011
).
29.
A.
Basu
and
J. K.
Bhattacharjee
, “
Varieties of scaling regimes in hydromagnetic turbulence
,”
Phys. Rev. E
98
,
062143
(
2018
).
30.
K.
Seshasayanan
,
S. J.
Benavides
, and
A.
Alexakis
, “
On the edge of an inverse cascade
,”
Phys. Rev. E
90
,
051003(R)
(
2014
).
31.
K.
Seshasayanan
and
A.
Alexakis
, “
Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow
,”
Phys. Rev. E
93
,
013104
(
2016
).
32.
A.
Alexakis
and
L.
Biferale
, “
Cascades and transitions in turbulent flows
,”
Phys. Rep.
767-769
,
1
101
(
2018
).
33.
G.
Boffetta
,
A.
Celani
, and
M.
Vergassola
, “
Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior
,”
Phys. Rev. E
61
,
R29(R)
(
2000
).
34.
A.
Okubo
, “
Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences
,”
Deep-Sea Res. Oceanogr. Abstr.
17
,
445
(
1970
).
35.
J.
Weiss
, “
The dynamics of enstrophy transfer in two-dimensional hydrodynamics
,”
Physica D
4
,
273
(
1992
).
36.
P.
Perlelar
and
R.
Pandit
, “
Statistically steady turbulence in thin films: Direct numerical simulations with Ekman friction
,”
New J. of Phys.
11
,
073003
(
2009
).
37.
B. K.
Shivamoggi
and
G. J. F.
van Heijst
, e-print arXiv:1110.6190.
38.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods: Fundamentals in Single Domain
(
Springer
,
1965
).
39.
R.
Pandit
,
P.
Perlekar
, and
S. S.
Ray
, “
Statistical properties of turbulence: An overview
,”
Pramana
73
,
157
(
2009
).
40.
R.
Marino
,
L.
Sorriso-Valvo
,
V.
Carbone
,
P.
Veltri
,
A.
Noullez
, and
R.
Bruno
, “
The magnetohydrodynamic turbulent cascade in the ecliptic solar wind: Study of Ulysses data
,”
Planet. Space Sci.
59
,
592
597
(
2011
).
You do not currently have access to this content.