The control effect of micro-vortex generators (VGs) on the instability of attached cavitation was investigated in a series of experiments. The micro-VGs, located at the leading edge of a NACA0015 hydrofoil, were used to alter the near-wall flow and control the attached cavitation dynamics. The effect of the nondimensional height of micro-VGs on the nondimensional cavity length was quantitatively evaluated by regression equations through response surface methodology. The micro-VGs increased the nondimensional cavity length. The counter-rotating streamwise vortices induced by micro-VGs had a rectifying effect on the near-wall flow and withstood the flow disturbance in the spanwise direction. Additionally, the micro-VGs partially suppressed Rayleigh–Taylor instability and Kelvin–Helmholtz instability arising from reverse flow underneath the cavity. Under a partial cavity oscillation (PCO) condition, the growth of sheet cavitation was highly two-dimensional in the spanwise direction, and the cloud cavity shedding had a strict periodicity with a smaller Strouhal number (St) than for the smooth hydrofoil. The shedding cloud cavity was captured in a single spanwise vortex core, which was advected toward the trailing edge of the hydrofoil. The transition from PCO to transitional cavity oscillation (TCO) occurred when the cavity length was larger than 0.8 of chord length. Under the TCO condition, the concave cavity closure line of sheet cavitation on the hydrofoil showed perfect symmetry and the St was nearly constant. As a result of our investigation, the micro-VGs have high potential to manipulate and control the attached cavitation dynamics.

1.
Y.
Tsujimoto
,
S.
Watanabe
, and
H.
Horiguchi
, “
Cavitation instabilities of hydrofoils and cascades
,”
Int. J. Fluid Mach. Syst.
1
,
38
46
(
2008
).
2.
Y.
Tsujimoto
,
Y.
Yoshida
,
Y.
Maekawa
,
S.
Watanabe
, and
T.
Hashimoto
, “
Observations of oscillating cavitation of an inducer
,”
J. Fluids Eng.
119
,
775
781
(
1997
).
3.
X.-w.
Luo
,
J.
Bin
, and
Y.
Tsujimoto
, “
A review of cavitation in hydraulic machinery
,”
J. Hydrodyn.
28
,
335
358
(
2016
).
4.
J.-P.
Franc
and
J.-M.
Michel
,
Fundamentals of Cavitation
(
Springer Netherlands
,
The Netherlands
,
2006
).
5.
R. E.
Arndt
, “
Cavitation in fluid machinery and hydraulic structures
,”
Annu. Rev. Fluid Mech.
13
,
273
326
(
1981
).
6.
S.
Gopalan
and
J.
Katz
, “
Flow structure and modeling issues in the closure region of attached cavitation
,”
Phys. Fluids
12
,
895
911
(
2000
).
7.
B.
Stutz
and
J.-L.
Reboud
, “
Two-phase flow structure of sheet cavitation
,”
Phys. Fluids
9
,
3678
3686
(
1997
).
8.
T.
Du
,
Y.
Wang
,
L.
Liao
, and
C.
Huang
, “
A numerical model for the evolution of internal structure of cavitation cloud
,”
Phys. Fluids
28
,
077103
(
2016
).
9.
O.
Coutier-Delgosha
,
J.-F.
Devillers
,
T.
Pichon
,
A.
Vabre
,
R.
Woo
, and
S.
Legoupil
, “
Internal structure and dynamics of sheet cavitation
,”
Phys. Fluids
18
,
017103
(
2006
).
10.
M. S.
Mihatsch
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra
,”
Phys. Fluids
27
,
103302
(
2015
).
11.
G. H.
Schnerr
,
I. H.
Sezal
, and
S. J.
Schmidt
, “
Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics
,”
Phys. Fluids
20
,
040703
(
2008
).
12.
J.-B.
Leroux
,
O.
Coutier-Delgosha
, and
J. A.
Astolfi
, “
A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil
,”
Phys. Fluids
17
,
052101
(
2005
).
13.
X.
Cheng
,
X.
Shao
, and
L.
Zhang
, “
The characteristics of unsteady cavitation around a sphere
,”
Phys. Fluids
31
,
042103
(
2019
).
14.
S.
Schenke
,
T.
Melissaris
, and
T. J. C.
van Terwisga
, “
On the relevance of kinematics for cavitation implosion loads
,”
Phys. Fluids
31
,
052102
(
2019
).
15.
R. E.
Arndt
, “
Some remarks on hydrofoil cavitation
,”
J. Hydrodyn.
24
,
305
314
(
2012
).
16.
B.
Ji
,
X.
Luo
,
R. E.
Arndt
,
X.
Peng
, and
Y.
Wu
, “
Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil
,”
Int. J. Multiphase Flow
68
,
121
134
(
2015
).
17.
C. P.
Egerer
,
S.
Hickel
,
S. J.
Schmidt
, and
N. A.
Adams
, “
Large-eddy simulation of turbulent cavitating flow in a micro channel
,”
Phys. Fluids
26
,
085102
(
2014
).
18.
M.
Adama Maiga
,
O.
Coutier-Delgosha
, and
D.
Buisine
, “
A new cavitation model based on bubble-bubble interactions
,”
Phys. Fluids
30
,
123301
(
2018
).
19.
E.
Ezzatneshan
, “
Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method
,”
Phys. Fluids
29
,
113304
(
2017
).
20.
B.
Ji
,
X.
Luo
,
R. E.
Arndt
, and
Y.
Wu
, “
Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction
,”
Ocean Eng.
87
,
64
77
(
2014
).
21.
J.
Decaix
and
E.
Goncalves
, “
Compressible effects modeling in turbulent cavitating flows
,”
Eur. J. Mech.: B/Fluids
39
,
11
31
(
2013
).
22.
X.
Long
,
H.
Cheng
,
B.
Ji
,
R. E. A.
Arndt
, and
X.
Peng
, “
Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil
,”
Int. J. Multiphase Flow
100
,
41
56
(
2018
).
23.
E.
Goncalves
and
J.
Decaix
, “
Wall model and mesh influence study for partial cavities
,”
Eur. J. Mech.: B/Fluids
31
,
12
29
(
2012
).
24.
Y.
Long
,
X.-p.
Long
,
B.
Ji
,
W.-x.
Huai
, and
Z.-d.
Qian
, “
Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil
,”
J. Hydrodyn.
29
,
610
620
(
2017
).
25.
Y.
Long
,
X.
Long
,
B.
Ji
, and
T.
Xing
, “
Verification and validation of large Eddy simulation of attached cavitating flow around a Clark-Y hydrofoil
,”
Int. J. Multiphase Flow
115
,
93
(
2019
).
26.
H.
Horiguchi
,
Y.
Semenov
,
M.
Nakano
, and
Y.
Tsujimoto
, “
Linear stability analysis of the effects of camber and blade thickness on cavitation instabilities in inducers
,”
J. Fluids Eng.
128
,
430
438
(
2005
).
27.
S.
Watanabe
,
K.
Sato
,
Y.
Tsujimoto
, and
K.
Kamijo
, “
Analysis of rotating cavitation in a finite pitch cascade using a closed cavity model and a singularity method
,”
J. Fluids Eng.
121
,
834
840
(
1999
).
28.
R. E.
Arndt
,
C.
Song
,
M.
Kjeldsen
,
J.
He
, and
A.
Keller
, “
Instability of partial cavitation: A numerical/experimental approach
,” in
Twenty-Third Symposium on Naval Hydrodynamics
,
Val de Reuil, France
,
2000
.
29.
S.
Watanabe
,
Y.
Tsujimoto
, and
A.
Furukawa
, “
Theoretical analysis of transitional and partial cavity instabilities
,”
J. Fluids Eng.
123
,
692
697
(
2001
).
30.
Y.
Iga
,
K.
Hashizume
, and
Y.
Yoshida
, “
Numerical analysis of three types of cavitation surge in cascade
,”
J. Fluids Eng.
133
,
071102
(
2011
).
31.
B.
Che
,
L.
Cao
,
N.
Chu
,
D.
Likhachev
, and
D.
Wu
, “
Dynamic behaviors of Re-entrant jet and cavity shedding during transitional cavity oscillation on NACA0015 hydrofoil
,”
J. Fluids Eng.
141
,
061101
(
2019
).
32.
Y.
Kawanami
,
H.
Kato
,
H.
Yamaguchi
,
M.
Tanimura
, and
Y.
Tagaya
, “
Mechanism and control of cloud cavitation
,”
J. Fluids Eng.
119
,
788
794
(
1997
).
33.
M.
Callenaere
,
J.-P.
Franc
,
J.-M.
Michel
, and
M.
Riondet
, “
The cavitation instability induced by the development of a re-entrant jet
,”
J. Fluid Mech.
444
,
223
256
(
2001
).
34.
J.-B.
Leroux
,
J. A.
Astolfi
, and
J. Y.
Billard
, “
An experimental study of unsteady partial cavitation
,”
J. Fluids Eng.
126
,
94
101
(
2004
).
35.
P.
Pelz
,
T.
Keil
, and
T.
Groß
, “
The transition from sheet to cloud cavitation
,”
J. Fluid Mech.
817
,
439
454
(
2017
).
36.
K.
Sato
,
M.
Tanada
,
S.
Monden
, and
Y.
Tsujimoto
, “
Observations of oscillating cavitation on a flat plate hydrofoil
,”
JSME Int. J., Ser. B
45
,
646
654
(
2002
).
37.
S.
Watanabe
,
W.
Yamaoka
, and
A.
Furukawa
, “
Unsteady lift and drag characteristics of cavitating Clark Y-11.7% hydrofoil
,” in
IOP Conference Series: Earth and Environmental Science
,
Montreal, Canada
,
2014
.
38.
A.
Fujii
,
D. T.
Kawakami
,
Y.
Tsujimoto
, and
R. E.
Arndt
, “
Effect of hydrofoil shapes on partial and transitional cavity oscillations
,”
J. Fluids Eng.
129
,
669
673
(
2007
).
39.
D. T.
Kawakami
,
A.
Fuji
,
Y.
Tsujimoto
, and
R.
Arndt
, “
An assessment of the influence of environmental factors on cavitation instabilities
,”
J. Fluids Eng.
130
,
031303
(
2008
).
40.
J.-P.
Franc
and
J.-M.
Michel
, “
Attached cavitation and the boundary layer: Experimental investigation and numerical treatment
,”
J. Fluid Mech.
154
,
63
90
(
1985
).
41.
A. T.
Leger
and
S. L.
Ceccio
, “
Examination of the flow near the leading edge of attached cavitation. Part I. Detachment of two-dimensional and axisymmetric cavities
,”
J. Fluid Mech.
376
,
61
90
(
1998
).
42.
A. T.
Leger
,
L. P.
Bernal
, and
S. L.
Ceccio
, “
Examination of the flow near the leading edge of attached cavitation. Part II. Incipient breakdown of two-dimensional and axisymmetric cavities
,”
J. Fluid Mech.
376
,
91
113
(
1998
).
43.
C.-Y.
Li
and
S. L.
Ceccio
, “
Interaction of single travelling bubbles with the boundary layer and attached cavitation
,”
J. Fluid Mech.
322
,
329
353
(
1996
).
44.
P.
Ausoni
,
A.
Zobeiri
,
F.
Avellan
, and
M.
Farhat
, “
The effects of a tripped turbulent boundary layer on vortex shedding from a blunt trailing edge hydrofoil
,”
J. Fluids Eng.
134
,
051207
(
2012
).
45.
H.
Kato
,
H.
Yamaguchi
,
S.
Okada
,
K.
Kikuchi
, and
M.
Miyanaga
, “
Suppression of sheet cavitation inception by water discharge through slit
,”
J. Fluids Eng.
109
,
70
74
(
1987
).
46.
R. E.
Arndt
,
C.
Ellis
, and
S.
Paul
, “
Preliminary investigation of the use of air injection to mitigate cavitation erosion
,”
J. Fluids Eng.
117
,
498
504
(
1995
).
47.
A. P.
Keller
, “
Cavitation scale effects-empirically found relations and the correlation of cavitation number and hydrodynamic coefficients
,” in
CAV 2001: Fourth International Symposium on Cavitation
,
Pasadena, CA, USA
,
2001
.
48.
E.
Kadivar
,
O.
el Moctar
, and
K.
Javadi
, “
Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation
,”
Appl. Math. Modell.
64
,
333
356
(
2018
).
49.
H.
An
, “
On the use of vortex generators to control cavitation in a backward facing step flow
,” Ph.D. thesis,
Purdue University
,
West Lafayette, State of Indiana, United States
,
2007
.
50.
F.
Lu
,
H.
Huang
,
Z.
Zhang
,
E.
Ding
, and
L.
Ying
, “
Application of the vortex generator to control the PHV cavitation
,”
J. Ship Mech.
6
,
007
(
2009
).
51.
E.
Kadivar
,
O. e.
Moctar
, and
K.
Javadi
, “
Stabilization of cloud cavitation instabilities using Cylindrical Cavitating-bubble Generators (CCGs)
,”
Int. J. Multiphase Flow
115
,
108
125
(
2019
).
52.
B.
Che
,
N.
Chu
,
S.
Schmidt
,
L.
Cao
,
D.
Likhachev
, and
D.
Wu
, “
Control effect of micro vortex generators on leading edge of attached cavitation
,”
Phys. Fluids
31
,
044102
(
2019
).
53.
G. E.
Box
and
K. B.
Wilson
,
On the Experimental Attainment of Optimum Conditions
(
Springer
,
New York
,
1992
).
54.
R. H.
Myers
,
D. C.
Montgomery
, and
C. M.
Anderson-Cook
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
, 4th ed. (
John Wiley & Sons
,
USA
,
2016
).
55.
M.
Kjeldsen
,
R. E.
Arndt
, and
M.
Effertz
, “
Spectral characteristics of sheet/cloud cavitation
,”
J. Fluids Eng.
122
,
481
487
(
2000
).
56.
V.
Arakeri
and
A.
Acosta
, “
Viscous effects in the inception of cavitation on axisymmetric bodies
,”
J. Fluids Eng.
95
,
519
527
(
1973
).
57.
V. H.
Arakeri
, “
Viscous effects on the position of cavitation separation from smooth bodies
,”
J. Fluid Mech.
68
,
779
799
(
1975
).
58.
E.-J.
Foeth
,
T.
van Terwisga
, and
C.
van Doorne
, “
On the collapse structure of an attached cavity on a three-dimensional hydrofoil
,”
J. Fluids Eng.
130
,
071303
(
2008
).
You do not currently have access to this content.