This study extends the analysis of the canonical developing pipe-flow problem to realistic inlet conditions affecting emerging jets. A comparison of simulations to existing theory reveals adverse phenomena caused by the inlet: the velocity profile inversion and flow separation (vena contracta) at a sharp inlet. Beginning with the simple uniform inflow, the inversion is shown to persists at significantly higher Re (Re = 2000) than previously reported. It is found to be caused by the theory’s neglected radial velocity, resulting from the boundary layer’s displacement effect. Rescaling of the inlet axial coordinate is shown to collapse all centerline velocity curves above Re = 100, thus elucidating the known weak dependence of entrance-length on Re. The sharp-inlet separation bubble is found not to occur below Re ≅ 320 although this inlet profile overrides the boundary layer’s effect. Furthermore, the bubble’s downstream length increases rapidly with Re, whereas its upstream length grows gradually and proportionally to its thickness—here identified as its characteristic-scale. Beyond the bubble, the profile relaxes to a monotonic form—captured beyond x/(Re·R) = 0.005, if theory is modified using the bubble’s characteristic-scale. This scale also sets the threshold which differentiates between a sharp-inlet regime, accompanied by a separation bubble, and a rounded-inlet one without it. The latter regime relaxes more rapidly to the monotonic profile—captured already beyond x = 2R. Finally, the modified idealized theory is demonstrated as a useful design tool—explicitly relating nozzle length to characteristics of emerging free-surface and submerged jets.

1.
Abbas
,
M.
,
Magaud
,
P.
,
Gao
,
Y.
, and
Geoffroy
,
S.
, “
Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers
,”
Phys. Fluids
26
(
12
),
123301
(
2014
).
2.
Andrade
,
E. N. C.
and
Tsien
,
L. C.
, “
The velocity-distribution in a liquid-into-liquid jet
,”
Phys. Soc.
49
(
4
),
381
391
(
1937
).
3.
Bohr
,
N.
, “
Determination of the surface-tension of water by method of jet vibration
,”
Proc. R. Soc. Lond. A
82
(
552
),
146
(
1909
).
4.
Davies
,
J. M.
,
Hutton
,
J. F.
, and
Walters
,
K.
, “
A critical re-appraisal of the jet-thrust technique for normal stresses, with particular reference to axial velocity and stress rearrangement at the exit plane
,”
J. Non-Newtonian Fluid Mech.
3
(
2
),
141
160
(
1977
).
5.
Duda
,
J. L.
and
Vrentas
,
J. S.
, “
Fluid mechanics of laminar liquid jets
,”
Chem. Eng. Sci.
22
(
6
),
855
869
(
1967
).
6.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O. A.
, “
The development lengths of laminar pipe and channel flows
,”
J. Fluids Eng.
127
(
6
),
1154
(
2005
).
7.
Fargie
,
D.
and
Martin
,
B. W.
, “
Developing laminar flow in a pipe of circular cross-section
,”
Proc. R. Soc. London, Ser. A
321
,
461
476
(
1971
).
8.
Friedmann
,
M.
,
Gillis
,
J.
, and
Liron
,
N.
, “
Laminar flow in a pipe at low and moderate Reynolds numbers
,”
Appl. Sci. Res.
19
(
1
),
426
438
(
1968
).
9.
Gavis
,
J.
and
Modan
,
M.
, “
Expansion and contraction of jets of Newtonian liquids in air: Effect of tube length
,”
Phys. Fluids
10
(
3
),
487
497
(
1967
).
10.
Greenshields
,
C. J.
,
Weller
,
H. G.
,
Gasparini
,
L.
, and
Reese
,
J. M.
, “
Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows
,”
Int. J. Numer. Methods Fluids
63
,
1
21
(
2010
).
11.
Hashmi
,
S. M.
,
Loewenberg
,
M.
, and
Firoozabadi
,
A.
, “
Colloidal asphaltene deposition in laminar pipe flow: Flow rate and parametric effects
,”
Phys. Fluids
27
(
8
),
083302
(
2015
).
12.
Haustein
,
H. D.
,
Harnik
,
R. S.
, and
Rohlfs
,
W.
, “
A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight
,”
Phys. Fluids
29
(
8
),
082105
(
2017
).
13.
Hornbeck
,
R. W.
, “
Laminar flow in the entrance region of a pipe
,”
Appl. Sci. Res.
13
(
1
),
224
232
(
1964
).
14.
Incropera
,
F. P.
,
Bergman
,
T. L.
,
Lavine
,
A. S.
, and
Dewitt
,
D. P.
,
Fundamentals of Heat and Mass Transfer
, 7th ed. (
John Wiley & Sons
,
2011
).
15.
Kashi
,
B.
and
Haustein
,
D. H.
, “
Dependence of submerged jet heat transfer on nozzle length
,”
Int. J. Heat Mass Transfer
121
,
137
(
2018
).
16.
Kashi
,
B.
and
Haustein
,
H. D.
, “
Microscale sets a fundamental limit to heat transfer
,”
Int. Commun. Heat Mass Transfer
104
,
1
7
(
2019
).
17.
Kashi
,
B.
,
Weinberg
,
E.
, and
Haustein
,
H. D.
, “
Analytical re-examination of the submerged laminar jet’s velocity evolution
,”
Phys. Fluids
30
,
063604
(
2018
).
18.
Langhaar
,
H. L.
, “
Steady flow in the transition length of a straight tube
,”
J. Appl. Mech.
9
,
55
58
(
1942
).
19.
Mamet
,
V.
,
Namy
,
P.
, and
Dedulle
,
J. M.
, “
Numerical modeling of flow focusing: Quantitative characterization of the flow regimes
,”
Phys. Fluids
29
(
9
),
093606
(
2017
).
20.
Mohanty
,
A. K.
and
Asthana
,
S. B. L.
, “
Imcompressible laminar and turbulent flow in the entrance region of a smooth circular pipe
,” in
6th Australian Hydraulics and Fluid Mechanics Conference
(
The Institution of Engineers
,
Australia
,
1977
), pp.
5
9
.
21.
Mohanty
,
A. K.
and
Asthana
,
S. B. L.
, “
Laminar flow in the entrance region of a smooth pipe
,”
J. Fluid Mech.
90
(
3
),
433
447
(
1979
).
22.
Priymak
,
V. G.
, “
Direct numerical simulation of quasi-equilibrium turbulent puffs in pipe flow
,”
Phys. Fluids
30
(
6
),
064102
(
2018
).
23.
Reci
,
A.
,
Sederman
,
A. J.
, and
Gladden
,
L. F.
, “
Experimental evidence of velocity profile inversion in developing laminar flow using magnetic resonance velocimetry
,”
J. Fluid Mech.
851
,
545
557
(
2018
).
24.
Revuelta
,
A.
,
Sánchez
,
A. L.
, and
Liñán
,
A.
, “
The virtual origin as a first-order correction for the far-field description of laminar jets
,”
Phys. Fluids
14
(
6
),
1821
1824
(
2002
).
25.
Schiller
,
L.
, “
Die enfwicklung der laminaren geschwindigkeitsverfeilung und ihre bedeufung fur zahigkeiismessungen
,”
J. Appl. Math. Mech.
2
,
96
106
(
1922
).
26.
Schlichting
,
H.
, “
Laminare kanaleinlaufstromung
,”
Zamm
14
,
368
373
(
1934
).
27.
Schlichting
,
H.
,
Boundary Layer Theory
, 7th ed. (
Mcgraw-Hill Book Company
,
1967
).
28.
Schwarz
,
W. H.
and
Caswell
,
B.
, “
Some heat transfer characteristics of the two-dimensional laminar incompressible wall jet
,”
Chem. Eng. Sci.
16
,
338
351
(
1961
).
29.
Shapiro
,
A. H.
,
Siegel
,
R.
, and
Kline
,
S. J.
, “
Friction factor in the laminar entry region of a smooth tube
,”
J. Appl. Mech.
21
(
3
),
289
(
1954
).
30.
Sparrow
,
E. M.
,
Lin
,
S. H.
, and
Lundgren
,
T. S.
, “
Flow development in the hydrodynamic entrance region of tubes and ducts
,”
Phys. Fluids
7
(
3
),
338
(
1964
).
31.
Stange
,
M.
,
Dreyer
,
M. E.
, and
Rath
,
H. J.
, “
Capillary driven flow in circular cylindrical tubes
,”
Phys. Fluids
15
(
9
),
2587
2601
(
2003
).
32.
Suñol
,
F.
and
González-Cinca
,
R.
, “
Liquid jet breakup and subsequent droplet dynamics under normal gravity and in microgravity conditions
,”
Phys. Fluids
27
(
7
),
077102
(
2015
).
33.
Umemura
,
A.
and
Osaka
,
J.
, “
Self-destabilizing loop observed in a jetting-to-dripping transition
,”
J. Fluid Mech.
752
,
184
218
(
2014
).
34.
Watson
,
E. J.
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
(
03
),
481
(
1964
).
You do not currently have access to this content.