It was shown recently that using the two-gradient method, thermal, caloric, and transport properties of fluids under quasi-equilibrium conditions can be determined simultaneously from nonequilibrium molecular dynamics simulations. It is shown here that the influence of shear stresses on these properties can also be studied using the same method. The studied fluid is described by the Lennard-Jones truncated and shifted potential with the cut-off radius rc*=2.5σ. For a given temperature T and density ρ, the influence of the shear rate on the following fluid properties is determined: pressure p, internal energy u, enthalpy h, isobaric heat capacity cp, thermal expansion coefficient αp, shear viscosity η, and self-diffusion coefficient D. Data for 27 state points in the range of T ∈ [0.7, 8.0] and ρ ∈ [0.3, 1.0] are reported for five different shear rates (γ̇[0.1,1.0]). Correlations for all properties are provided and compared with literature data. An influence of the shear stress on the fluid properties was found only for states with low temperature and high density. The shear-rate dependence is caused by changes in the local structure of the fluid which were also investigated in the present work. A criterion for identifying the regions in which a given shear stress has an influence on the fluid properties was developed. It is based on information on the local structure of the fluid. For the self-diffusivity, shear-induced anisotropic effects were observed and are discussed.

1.
B. V.
Raghavan
and
M.
Ostoja-Starzewski
, “
Shear-thinning of molecular fluids in Couette flow
,”
Phys. Fluids
29
,
023103
(
2017
).
2.
R. I.
Tanner
, “
Review article: Aspects of non-colloidal suspension rheology
,”
Phys. Fluids
30
,
101301
(
2018
).
3.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press, Oxford Science Publications
,
Oxford
,
1989
).
4.
A.
Trokhymchuk
and
J.
Alejandre
, “
Computer simulations of liquid/vapor interface in Lennard-Jones fluids: Some questions and answers
,”
J. Chem. Phys.
111
,
8510
8523
(
1999
).
5.
V.
Baidakov
,
G.
Chernykh
, and
S.
Protsenko
, “
Effect of the cut-off radius of the intermolecular potential on phase equilibrium and surface tension in Lennard-Jones systems
,”
Chem. Phys. Lett.
321
,
315
320
(
2000
).
6.
J.
López-Lemus
and
J.
Alejandre
, “
Thermodynamic and transport properties of simple fluids using lattice sums: Bulk phases and liquid-vapour interface
,”
Mol. Phys.
100
,
2983
2992
(
2002
).
7.
G.
Rutkai
,
M.
Thol
,
R.
Span
, and
J.
Vrabec
, “
How well does the Lennard-Jones potential represent the thermodynamic properties of noble gases?
,”
Mol. Phys.
115
,
1104
1121
(
2017
).
8.
M. P.
Lautenschlaeger
and
H.
Hasse
, “
Transport properties of the Lennard-Jones truncated and shifted model fluid from non-equilibrium molecular dynamics calculations
,”
Fluid Phase Equilib.
482
,
38
47
(
2019
).
9.
M. P.
Lautenschlaeger
and
H.
Hasse
, “
Thermal and caloric properties of fluids from non-equilibrium molecular dynamics simulations using the two-gradient method
,”
J. Chem. Phys.
149
,
244106
(
2018
).
10.
D. J.
Evans
and
R.
Watts
, “
Shear-dependent viscosity in simple fluids
,”
Chem. Phys.
48
,
321
327
(
1980
).
11.
D. M.
Heyes
, “
Shear thinning and thickening of the Lennard-Jones liquid. A molecular dynamics study
,”
J. Chem. Soc., Faraday Trans. 2
82
,
1365
(
1986
).
12.
D. J.
Evans
, “
Rheological properties of simple fluids by computer simulation
,”
Phys. Rev. A
23
,
1988
1997
(
1981
).
13.
H. J. M.
Hanley
and
D. J.
Evans
, “
A thermodynamics for a system under shear
,”
J. Chem. Phys.
76
,
3225
3232
(
1982
).
14.
D. M.
Heyes
,
J. J.
Kim
,
C. J.
Montrose
, and
T. A.
Litovitz
, “
Time dependent nonlinear shear stress effects in simple liquids: A molecular dynamics study
,”
J. Chem. Phys.
73
,
3987
3996
(
1980
).
15.
S.
Sarman
,
D. J.
Evans
, and
A.
Baranyai
, “
Mutual and self-diffusion in fluids undergoing strong shear
,”
Phys. Rev. A
46
,
893
902
(
1992
).
16.
A.
Ahmed
and
R. J.
Sadus
, “
Nonequilibrium equation of state for Lennard-Jones fluids and the calculation of strain-rate dependent shear viscosity
,”
AIChE J.
57
,
250
258
(
2011
).
17.
D.
Heyes
, “
The molecular dynamics study of shear thinning of the Lennard-Jones fluid
,”
Chem. Phys.
109
,
47
65
(
1986
).
18.
D. M.
Heyes
, “
Viscosity and self-diffusion of simple liquids. Hard-sphere treatment of molecular dynamics data
,”
J. Chem. Soc., Faraday Trans. 2
83
,
1985
(
1987
).
19.
P. T.
Cummings
,
B. Y.
Wang
,
D. J.
Evans
, and
K. J.
Fraser
, “
Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field
,”
J. Chem. Phys.
94
,
2149
2158
(
1991
).
20.
J.
Delhommelle
,
J.
Petravic
, and
D. J.
Evans
, “
Non-Newtonian behavior in simple fluids
,”
J. Chem. Phys.
120
,
6117
6123
(
2004
).
21.
R.-y.
Dong
,
B.-y.
Cao
,
H.-m.
Yun
, and
B.-m.
Chen
, “
Study on non-newtonian behaviors of Lennard-Jones fluids via molecular dynamics simulations
,”
Chin. J. Chem. Phys.
29
,
754
760
(
2016
).
22.
H. J. M.
Hanley
,
J. C.
Rainwater
, and
S.
Hess
, “
Shear-induced angular dependence of the liquid pair correlation function
,”
Phys. Rev. A
36
,
1795
1802
(
1987
).
23.
S.
Hess
and
H. J. M.
Hanley
, “
Distortion of the structure of a simple fluid
,”
Phys. Rev. A
25
,
1801
1804
(
1982
).
24.
W. P.
Krekelberg
,
V.
Ganesan
, and
T. M.
Truskett
, “
Shear-rate-dependent structural order and viscosity of a fluid with short-range attractions
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
78
(
1
),
010201
(
2008
).
25.
T.
Yamaguchi
, “
Stress-structure coupling and nonlinear rheology of Lennard-Jones liquid
,”
J. Chem. Phys.
148
,
234507
(
2018
).
26.
X.
Yong
and
L. T.
Zhang
, “
Nanoscale simple-fluid behavior under steady shear
,”
Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.
85
,
051202
(
2012
).
27.
M. P.
Lautenschlaeger
,
M.
Horsch
, and
H.
Hasse
, “
Simultaneous determination of thermal conductivity and shear viscosity using two-gradient non-equilibrium molecular dynamics simulations
,”
Mol. Phys.
117
,
189
199
(
2019
).
28.
P.
Wirnsberger
,
D.
Frenkel
, and
C.
Dellago
, “
An enhanced version of the heat exchange algorithm with excellent energy conservation properties
,”
J. Chem. Phys.
143
,
124104
(
2015
).
29.
D. J.
Evans
and
G. P.
Morriss
, “
Shear thickening and turbulence in simple fluids
,”
Phys. Rev. Lett.
56
,
2172
2175
(
1986
).
30.
M. P.
Allen
and
F.
Schmid
, “
A thermostat for molecular dynamics of complex fluids
,”
Mol. Simul.
33
,
21
26
(
2007
).
31.
A.
Einstein
, “
Über die von der molekularkinetischen theorie der Wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen
,”
Ann. Phys.
322
,
549
560
(
1905
).
32.
J.
Vrabec
,
G. K.
Kedia
,
G.
Fuchs
, and
H.
Hasse
, “
Comprehensive study of the vapour–liquid coexistence of the truncated and shifted Lennard–Jones fluid including planar and spherical interface properties
,”
Mol. Phys.
104
,
1509
1527
(
2006
).
33.
K.
Binder
,
J.
Horbach
,
W.
Kob
,
W.
Paul
, and
F.
Varnik
, “
Molecular dynamics simulations
,”
J. Phys.: Condens. Matter
16
,
S429
S453
(
2004
).
34.
M.
Bugel
and
G.
Galliero
, “
Thermal conductivity of the Lennard-Jones fluid: An empirical correlation
,”
Chem. Phys.
352
,
249
257
(
2008
).
35.
J.
Nichele
,
I.
Borges
,
A. B.
Oliveira
, and
L. S.
Alves
, “
Molecular dynamics simulations of momentum and thermal diffusion properties of near-critical argon along isobars
,”
J. Supercrit. Fluids
114
,
46
54
(
2016
).
36.
O. A.
Moultos
,
Y.
Zhang
,
I. N.
Tsimpanogiannis
,
I. G.
Economou
, and
E. J.
Maginn
, “
System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO2, n-alkanes, and poly(ethylene glycol) dimethyl ethers
,”
J. Chem. Phys.
145
,
074109
(
2016
).
37.
I.-c.
Yeh
and
G.
Hummer
, “
System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
,”
J. Phys. Chem. B
108
,
15873
15879
(
2004
).
38.
J.
Irving
and
J.
Kirkwood
, “
The statistical mechanics theory of transport processes. IV. The equations of hydrodynamics
,”
J. Chem. Phys.
18
,
817
829
(
1950
).
39.
P.
Bordat
and
F.
Müller-Plathe
, “
The shear viscosity of molecular fluids: A calculation by reverse nonequilibrium molecular dynamics
,”
J. Chem. Phys.
116
,
3362
3369
(
2002
).
40.
C.
Niethammer
,
S.
Becker
,
M.
Bernreuther
,
M.
Buchholz
,
W.
Eckhardt
,
A.
Heinecke
,
S.
Werth
,
H.-J.
Bungartz
,
C. W.
Glass
,
H.
Hasse
,
J.
Vrabec
, and
M.
Horsch
, “
ls1 mardyn: The massively parallel molecular dynamics code for large systems
,”
J. Chem. Theory Comput.
10
,
4455
4464
(
2014
).
41.
G.
Rosenthal
and
S. H. L.
Klapp
, “
Micelle and bilayer formation of amphiphilic Janus particles in a slit-pore
,”
Int. J. Mol. Sci.
13
,
9431
9446
(
2012
).
42.
J. G.
Kirkwood
and
F. P.
Buff
, “
The statistical mechanical theory of solutions. I
,”
J. Chem. Phys.
19
,
774
777
(
1951
).
43.
M.
Heier
,
S.
Stephan
,
J.
Liu
,
W. G.
Chapman
,
H.
Hasse
, and
K.
Langenbach
, “
Equation of state for the Lennard-Jones truncated and shifted fluid with a cut-off radius of 2.5 σ based on perturbation theory and its applications to interfacial thermodynamics
,”
Mol. Phys.
116
,
2083
2094
(
2018
).
44.
M.
Thol
,
G.
Rutkai
,
R.
Span
,
J.
Vrabec
, and
R.
Lustig
, “
Equation of state for the Lennard-Jones truncated and shifted model fluid
,”
Int. J. Thermophys.
36
,
25
43
(
2015
).
45.
F.
Ree
,
T.
Ree
, and
H.
Eyring
, “
Relaxation theory of transport problems in condensed systems
,”
Ind. Eng. Chem.
50
,
1036
1040
(
1958
).
46.
J. C. M.
Li
and
P.
Chang
, “
Self-diffusion coefficient and viscosity in liquids
,”
J. Chem. Phys.
23
,
518
520
(
1955
).
47.
D. J.
Evans
and
H.
Hanley
, “
A thermodynamics of steady homogeneous shear flow
,”
Phys. Lett. A
80
,
175
177
(
1980
).
48.
J.
Ge
,
B. D.
Todd
,
G.
Wu
, and
R. J.
Sadus
, “
Scaling behavior for the pressure and energy of shearing fluids
,”
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
67
,
061201
(
2003
).
49.
K.
Kawasaki
and
J. D.
Gunton
, “
Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects
,”
Phys. Rev. A
8
,
2048
2064
(
1973
).
50.
M.
Schmidt
and
H.
Lipson
, Eureqa (Version 0.98 Beta),
Nutonian, Inc.
,
Boston
,
2014
.
51.
G.
Marcelli
,
B. D.
Todd
, and
R. J.
Sadus
, “
Analytic dependence of the pressure and energy of an atomic fluid under shear
,”
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
63
,
021204
(
2001
).
52.
V.
Garzó
and
M.
López de Haro
, “
Tracer diffusion under shear flow for general repulsive interactions
,”
Phys. Fluids
7
,
478
486
(
1995
).
53.
V.
Garzó
and
A.
Santos
, “
Diffusion in a gaseous dilute solution under heat and momentum transport
,”
Phys. Rev. E
52
,
4942
4951
(
1995
).
54.
S.
Peter
, “
Über die viskosität und die selbstdiffusion von flüssigkeiten
,”
Z. Naturforsch. A
9
,
98
104
(
1954
).
55.
A.
Baranyai
and
P. T.
Cummings
, “
Directional dependence of the random kinetic energy in planar Couette flow
,”
Mol. Phys.
90
,
35
41
(
1997
).
56.
H.
Eyring
, “
Viscosity, plasticity, and diffusion as examples of absolute reaction rates
,”
J. Chem. Phys.
4
,
283
291
(
1936
).
57.
A. E.
Giannakopoulos
,
F.
Sofos
,
T. E.
Karakasidis
, and
A.
Liakopoulos
, “
Unified description of size effects of transport properties of liquids flowing in nanochannels
,”
Int. J. Heat Mass Transfer
55
,
5087
5092
(
2012
).

Supplementary Material

You do not currently have access to this content.