One good way to explore fluid microstructure, experimentally, is to suddenly subject the fluid to a large steady shearing deformation and to then observe the evolving stress response. If the steady shear rate is high enough, the shear stress and also the normal stress differences can overshoot, and then they can even undershoot. We call such responses nonlinear and this experiment shear stress growth. This paper is devoted to providing exact analytical solutions for interpreting measured nonlinear shear stress growth responses. Specifically, we arrive at the exact solutions for the Oldroyd 8-constant constitutive framework. We test our exact solution against the measured behaviors of two wormlike micellar solutions. At high shear rates, these solutions overshoot in stress growth without subsequent undershoot. The micellar solutions present linear behavior at low shear rates; otherwise, their behavior is nonlinear. Our framework provides slightly early underpredictions of the overshoots at high shear rates. The effect of salt concentration on the nonlinear parameters is explored.

1.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
NY
,
1977
), Vol. 1.
2.
R. B.
Bird
,
H. R.
Warner
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,” in
Fortschritte Der Hochpolymeren-Forschung: Advances in Polymer Science
(
Springer
,
Berlin, Heidelberg
,
1971
), pp.
1
90
.
3.
D. G.
Baird
and
D. I.
Collias
,
Polymer Processing: Principles and Design
(
Wiley
,
Hoboken, New Jersey
,
2014
).
4.
J. M.
Dealy
and
J.
Wang
,
Melt Rheology and its Applications in the Plastics Industry
, 2nd ed. (
Springer
,
Dordrecht
,
2013
).
5.
R. I.
Tanner
,
Engineering Rheology
(
Clarendon Press
,
Oxford
,
1985
).
6.
J. M.
Dealy
and
R. G.
Larson
,
Structure and Rheology of Molten Polymer: From Structure to Flow Behavior and Back Again
(
Hanser
,
Munich
,
2006
).
7.
N.
Phan-Thien
,
Understanding Viscoelasticity: Basics of Rheology
(
Springer
,
Berlin
,
2002
).
8.
J. M.
Dealy
and
K. F.
Wissbrun
,
Melt Rheology and its Role in Plastic Processing: Theory and Applications
(
Van Nostrand Reinhold
,
New York
,
1989
).
9.
Ad Hoc Committee on Official Nomenclature and Symbols
, “
Official symbols and nomenclature of the Society of Rheology
,”
J. Rheol.
57
,
1047
1055
(
2013
).
10.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
(
Butterworths
,
Boston
,
1988
).
11.
Y. T.
Hu
and
A.
Lips
, “
Kinetics and mechanism of shear banding in an entangled micellar solution
,”
J. Rheol.
49
(
5
),
1001
1027
(
2005
).
12.
P.
Fischer
, “
Time dependent flow in equimolar micellar solutions: Transient behaviour of the shear stress and first normal stress difference in shear induced structures coupled with flow instabilities
,”
Rheol. Acta
39
(
3
),
234
240
(
2000
).
13.
W. K.-W.
Tsang
,
The Use of Large Transient Deformations to Elucidate Structural Phenomena and Evaluate Network Models for Molten Polymers
(
Department of Chemical Engineering, McGill University
,
Montréal, Canada
,
1980
).
14.
W. K.-W.
Tsang
and
J. M.
Dealy
, “
The use of large transient deformations to evaluate rheological models for molten polymers
,”
J. Non-Newtonian Fluid Mech.
9
(
3-4
),
203
222
(
1981
).
15.
D. A.
Gagnon
,
N. C.
Keim
,
X.
Shen
, and
P. E.
Arratia
, “
Fluid-induced propulsion of rigid particles in wormlike micellar solutions
,”
Phys. Fluids
26
(
10
),
103101
(
2014
).
16.
T.
Grumstrup
and
A.
Belmonte
, “
Elastic splash of two Newtonian liquids
,”
Phys. Fluids
19
(
9
),
091109
(
2007
).
17.
M. C.
Sostarecz
and
A.
Belmonte
, “
Beads-on-string phenomena in wormlike micellar fluids
,”
Phys. Fluids
16
(
9
),
L67
L70
(
2004
).
18.
A. Q.
Shen
,
B.
Gleason
,
G. H.
McKinley
, and
H. A.
Stone
, “
Fiber coating with surfactant solutions
,”
Phys. Fluids
14
(
11
),
4055
4068
(
2002
).
19.
S.
Ezrahi
,
E.
Tuval
,
A.
Aserin
, and
N.
Garti
, “
Daily applications of systems with wormlike micelles
,” in
Giant Micelles: Properties and Applications
, edited by
R.
Zana
and
E. W.
Kaler
(
CRC Press
,
Boca Raton, FL
,
2007
), Chap. 18.
20.
C. A.
Dreiss
, “
Wormlike micelles: An introduction
,” in
Wormlike Micelles Advances in Systems, Characterisation and Applications, CPI
, edited by
C. A.
Dreiss
and
Y.
Feng
(
Croydon
,
UK
,
2017
), Chap. 1.
21.
R.
Pasquino
,
B. D.
Gennaro
,
D.
Gaudino
, and
N.
Grizzuti
, “
On the use of nonsteroidal anti-inflammatory drugs as rheology modifiers for surfactant solutions
,”
J. Pharm. Sci.
106
(
11
),
3410
3412
(
2017
).
22.
D.
Gaudino
,
R.
Pasquino
,
H.
Kriegs
,
N.
Szekely
,
W.
Pyckhout-Hintzen
,
M. P.
Lettinga
, and
N.
Grizzuti
, “
Effect of the salt-induced micellar microstructure on the nonlinear shear flow behavior of ionic cetylpyridinium chloride surfactant solutions
,”
Phys. Rev. E
95
(
3
),
032603
(
2017
).
23.
J. N.
Israelachvili
,
D. J.
Mitchell
, and
B. W.
Ninham
, “
Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers
,”
J. Chem. Soc., Faraday Trans. 2
72
,
1525
1568
(
1976
).
24.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
MA
,
2011
).
25.
Y.
Zhao
,
P.
Cheung
, and
A. Q.
Shen
, “
Microfluidic flows of wormlike micellar solutions
,”
Adv. Colloid Interface Sci.
211
,
34
46
(
2014
).
26.
S. R.
Raghavan
and
Y.
Feng
, “
Wormlike micelles: Solutions, gels, or both?
,”in
Wormlike Micelles Advances in Systems, Characterisation and Applications, CPI
, edited by
C. A.
Dreiss
and
Y.
Feng
(
Croydon
,
UK
,
2017
), Chap. 2.
27.
R.
Pasquino
,
M.
Di Domenico
,
F.
Izzo
,
D.
Gaudino
,
V.
Vanzanella
,
N.
Grizzuti
, and
B.
de Gennaro
, “
Rheology-sensitive response of zeolite-supported anti-inflammatory drug systems
,”
Colloids Surf., B
146
,
938
944
(
2016
).
28.
S. A.
Rogers
,
M. A.
Calabrese
, and
N. J.
Wagner
, “
Rheology of branched wormlike micelles
,”
Curr. Opin. Colloid Interface Sci.
19
(
6
),
530
535
(
2014
).
29.
D.
Gaudino
,
R.
Pasquino
, and
N.
Grizzuti
, “
Adding salt to a surfactant solution: Linear rheological response of the resulting morphologies
,”
J. Rheol.
59
(
6
),
1363
1375
(
2015
).
30.
H.
Rehage
and
H.
Hoffmann
, “
Rheological properties of viscoelastic surfactant systems
,”
J. Phys. Chem.
92
(
16
),
4712
4719
(
1988
).
31.
C. J.
Pipe
,
N. J.
Kim
,
P. A.
Vasquez
,
L. P.
Cook
, and
G. H.
McKinley
, “
Wormlike micellar solutions: II. Comparison between experimental data and scission model predictions
,”
J. Rheol.
54
(
4
),
881
913
(
2010
).
32.
J. G.
Oldroyd
, “
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids
,”
Proc. R. Soc. London, Ser. A
245
(
1241
),
278
297
(
1958
).
33.
P.
Poungthong
,
A. J.
Giacomin
,
C.
Saengow
, and
C.
Kolitawong
, “
Series expansion for shear stress in large-amplitude oscillatory shear flow from Oldroyd 8-constant framework
,”
Can. J. Chem. Eng.
97
,
1655
1675
(
2018
).
34.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
(
4
),
043101
(
2017
).
35.
C.
Saengow
and
A. J.
Giacomin
, “
Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow
,”
Phys. Fluids
29
(
12
),
121601
(
2017
).
36.
C.
Saengow
and
A. J.
Giacomin
, “
Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework
,”
Phys. Fluids
30
(
3
),
030703
(
2018
).
37.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Extruding plastic Pipe from eccentric dies
,”
J. Non-Newtonian Fluid Mech.
223
,
176
199
(
2015
).
38.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Knuckle formation from melt elasticity in plastic pipe extrusion
,”
J. Non-Newtonian Fluid Mech.
242
,
11
22
(
2017
).
39.
C.
Saengow
and
A. J.
Giacomin
, “
Fluid elasticity in plastic pipe extrusion: Loads on die barrel
,”
Int. Polym. Process.
32
(
5
),
648
658
(
2017
).
40.
C.
Saengow
,
A. J.
Giacomin
,
N.
Khalaf
, and
M.
Guay
, “
Simple accurate expressions for shear stress in large-amplitude oscillatory shear flow
,”
Nihon Reoroji Gakkaishi
45
(
5
),
251
260
(
2017
).
41.
J.-F.
Berret
, “
Transient rheology of wormlike micelles
,”
Langmuir
13
(
8
),
2227
2234
(
1997
).
42.
C.
Saengow
,
A. J.
Giacomin
,
P. H.
Gilbert
, and
C.
Kolitawong
, “
Reflections on inflections
,”
Korea-Aust. Rheol. J.
27
(
4
),
267
285
(
2015
).
43.
M.
Ouchi
,
T.
Takahashi
, and
M.
Shirakashi
, “
Shear-induced structure change and flow-instability in start-up Couette flow of aqueous, wormlike micelle solution
,”
J. Rheol.
50
(
3
),
341
352
(
2006
).
44.
C. R.
López-Barrón
,
A. K.
Gurnon
,
A. P. R.
Eberle
,
L.
Porcar
, and
N. J.
Wagner
, “
Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation
,”
Phys. Rev. E
89
(
4
),
042301
(
2014
).
45.
P. E.
Boukany
,
S.-Q.
Wang
, and
X.
Wang
, “
Universal scaling behavior in startup shear of entangled linear polymer melts
,”
J. Rheol.
53
(
3
),
617
629
(
2009
).
46.
P.
Tapadia
and
S.-Q.
Wang
, “
Nonlinear flow behavior of entangled polymer solutions: Yield like entanglement−disentanglement transition
,”
Macromolecules
37
(
24
),
9083
9095
(
2004
).
47.
P. E.
Boukany
and
S.-Q.
Wang
, “
A correlation between velocity profile and molecular weight distribution in sheared entangled polymer solutions
,”
J. Rheol.
51
(
2
),
217
233
(
2007
).
48.
P. E.
Boukany
,
Y. T.
Hu
, and
S.-Q.
Wang
, “
Observations of wall slip and shear banding in an entangled DNA solution
,”
Macromolecules
41
(
7
),
2644
2650
(
2008
).
49.
P. E.
Boukany
and
S.-Q.
Wang
, “
Shear banding or not in entangled DNA solutions depending on the level of entanglement
,”
J. Rheol.
53
(
1
),
73
83
(
2009
).
50.
P. E.
Boukany
and
S.-Q.
Wang
, “
Use of particle-tracking velocimetry and flow birefringence to study nonlinear flow behavior of entangled wormlike micellar solution: From wall slip, bulk disentanglement to chain scission
,”
Macromolecules
41
(
4
),
1455
1464
(
2008
).
51.
A. F.
Méndez-Sánchez
,
M. R.
López-González
,
V. H.
Rolón-Garrido
,
J.
Perez-Gonzalez
, and
L.
de Vargas
, “
Instabilities of micellar systems under homogeneous and non-homogeneous flow conditions
,”
Rheol. Acta
42
(
1–2
),
56
63
(
2003
).
52.
J. R.
Dormand
and
P. J.
Prince
, “
A family of embedded Runge-Kutta formulae
,”
J. Comput. Appl. Math.
6
(
1
),
19
26
(
1980
).
53.
L. F.
Shampine
and
M. W.
Reichelt
, “
The matlab ode suite
,”
SIAM J. Sci. Comput.
18
(
1
),
1
22
(
1997
).
54.
C.
Saengow
,
A. J.
Giacomin
,
X.
,
C.
Kolitawong
,
C.
Aumnate
, and
A. W.
Mix
, “
Bubble growth from first principles
,”
Can. J. Chem. Eng.
94
,
1560
1575
(
2016
).
55.
R. B.
Bird
and
A. J.
Giacomin
, “
Polymer fluid dynamics: Continuum and molecular approaches
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
479
507
(
2016
).
56.
A. J.
Giacomin
and
C.
Saengow
, “
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
,”
Mod. Phys. Lett. B
32
(
12/13
),
1840036
(
2018
).
57.
T.
Inoue
,
Y.
Inoue
, and
H.
Watanabe
, “
Nonlinear rheology of CTAB/NaSal aqueous solutions: Finite extensibility of A network of wormlike micelles
,”
Langmuir
21
(
4
),
1201
1208
(
2005
).
58.
P. G.
Santangelo
and
C. M.
Roland
, “
Interrupted shear flow of unentangled polystyrene melts
,”
J. Rheol.
45
(
2
),
583
594
(
2001
).
59.
R. S.
Jeyaseelan
and
A. J.
Giacomin
, “
Polymer melt anisotropy in biaxial shear
,”
J. Rheol.
39
(
2
),
267
283
(
1995
).
60.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Clarendon Press
,
Oxford
,
1986
), in paperback with corrections.
61.
I. A.
Kadoma
and
J. W.
van Egmond
, “
Shear-enhanced orientation and concentration fluctuations in wormlike micelles: Effect of salt
,”
Langmuir
13
(
17
),
4551
4561
(
1997
).
62.
P. A.
Vasquez
,
G. H.
McKinley
, and
L. P.
Cook
, “
A network scission model for wormlike micellar solutions: I. Model formulation and viscometric flow predictions
,”
J. Non-Newtonian Fluid Mech.
144
(
2–3
),
122
139
(
2007
).
63.
J. F.
Berret
,
J.
Appell
, and
G.
Porte
, “
Linear rheology of entangled wormlike micelles
,”
Langmuir
9
(
11
),
2851
2854
(
1993
).
64.
J.
Lipfert
,
L.
Columbus
,
V. B.
Chu
,
S. A.
Lesley
, and
S.
Doniach
, “
Size and shape of detergent micelles determined by small-angle X-ray scattering
,”
J. Phys. Chem. B
111
(
43
),
12427
12438
(
2007
).
65.
I. A.
Kadoma
and
J. W.
van Egmond
, “
‘Tuliplike’ scattering patterns in wormlike micelles under shear flow
,”
Phys. Rev. Lett.
76
(
23
),
4432
4435
(
1996
).
66.
E.
Miller
and
J. P.
Rothstein
, “
Transient evolution of shear-banding wormlike micellar solutions
,”
J. Non-Newtonian Fluid Mech.
143
(
1
),
22
37
(
2007
).
67.
E. K.
Wheeler
,
P.
Izu
, and
G. G.
Fuller
, “
Structure and rheology of wormlike micelles
,”
Rheol. Acta
35
(
2
),
139
149
(
1996
).
68.
S.
Förster
,
M.
Konrad
, and
P.
Lindner
, “
Shear thinning and orientational ordering of wormlike micelles
,”
Phys. Rev. Lett.
94
(
1
),
017803
(
2005
).
69.
J. J.
Kovacic
, “
An algorithm for solving second order linear homogeneous differential equations
,”
J. Symb. Comput.
2
(
1
),
3
43
(
1986
).
70.
J. G.
Oakley
,
J. A.
Yosick
, and
A. J.
Giacomin
, “
Molecular origins of nonlinear viscoelasticity
,”
Microchim. Acta
130
,
1
28
(
1998
).
71.
M. R.
Apelian
,
R. C.
Armstrong
, and
R. A.
Brown
, “
Impact of the constitutive equation and singularity on the calculation of stick-slip flow: The modified upper-convected Maxwell model (MUCM)
,”
J. Non-Newtonian Fluid Mech.
27
(
3
),
299
321
(
1988
).
72.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19–20
),
1081
1099
(
2011
).
73.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions: Butterworths Series in Chemical Engineering
(
Butterworth-Heinemann
,
MA
,
1988
).
74.
A. J.
Giacomin
and
R. B.
Bird
, “
Normal stress differences in large-amplitude oscillatory shear flow for the corotational ‘ANSR’ model
,”
Rheol. Acta
50
(
9–10
),
741
752
(
2011
).
75.
H.
Jeffreys
,
The Earth: Its Origin, History and Physical Constitution
(
Cambridge University Press
,
Cambridge, London
,
1924
).
76.
M. C.
Williams
and
R. B.
Bird
, “
Three-constant Oldroyd model for viscoelastic fluids
,”
Phys. Fluids
5
(
9
),
1126
1128
(
1962
).
M. C.
Williams
and
R. B.
Bird
, “
Erratum: Three-constant Oldroyd model for viscoelastic fluids
,”
Phys. Fluids
6
(
2
),
314
(
1963
).
77.
J. S.
Ultman
and
M. M.
Denn
, “
Slow viscoelastic flow past submerged objects
,”
Chem. Eng. J.
2
(
2
),
81
89
(
1971
).
78.
J. H.
Piette
,
L. M.
Jbara
,
C.
Saengow
, and
A. J.
Giacomin
, “
Exact coefficients for rigid dumbbell suspensions for steady shear flow material function expansions
,”
Phys. Fluids
31
(
2
),
021212
(
2018
).
79.
R. J.
Gordon
and
W. R.
Schowalter
, “
Anisotropic fluid theory: A different approach to the dumbbell theory of dilute polymer solutions
,”
Trans. Soc. Rheol.
16
(
1
),
79
97
(
1972
).
80.
M. W.
Johnson
and
D. J.
Segalman
, “
A model for viscoelastic fluid behavior which allows non-affine deformation
,”
J. Non-Newtonian Fluid Mech.
2
(
3
),
255
270
(
1977
).
81.
M. W.
Johnson
and
D. J.
Segalman
, “
Description of the non-affine motions of dilute polymer solutions by the porous molecule model
,”
J. Non-Newtonian Fluid Mech.
9
(
1
),
33
56
(
1981
).
82.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
Wiley
,
New York
,
1987
), Vol. 1.
83.
H.
Rehage
and
H.
Hoffmann
, “
Viscoelastic surfactant solutions: Model systems for rheological research
,”
Mol. Phys.
74
(
5
),
933
973
(
1991
).
84.
P.
Fischer
and
H.
Rehage
, “
Non-linear flow properties of viscoelastic surfactant solutions
,”
Rheol. Acta
36
(
1
),
13
27
(
1997
).
85.
M. M.
Britton
,
R. W.
Mair
,
R. K.
Lambert
, and
P. T.
Callaghan
, “
Transition to shear banding in pipe and Couette flow of wormlike micellar solutions
,”
J. Rheol.
43
(
4
),
897
909
(
1999
).
86.
R. N.
Al-kaby
,
J. S.
Jayaratne
,
T. I.
Brox
,
S. L.
Codd
,
J. D.
Seymour
, and
J. R.
Brown
, “
Rheo-NMR of transient and steady state shear banding under shear startup
,”
J. Rheol.
62
(
5
),
1125
1134
(
2018
).
87.
R. B.
Bird
and
A. J.
Giacomin
, “
Who conceived the ‘complex viscosity’?
,”
Rheol. Acta
51
(
6
),
481
486
(
2012
).
88.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow
,”
Macromol. Theory Simul.
24
(
4
),
352
392
(
2015
).
89.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, revised 2nd ed. (
John Wiley & Sons
,
New York
,
2007
).
90.
R. B.
Bird
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
D. J.
Klingenberg
,
Introductory Transport Phenomena
(
John Wiley & Sons
,
New York
,
2015
).

Supplementary Material

You do not currently have access to this content.