A liquid bridge between two neighboring particles is commonly observed in nature and various industrial processes. An accurate prediction of the profile of a liquid bridge is significantly important in particulate flows, while it is an analytically challenging task as well. In this paper, we develop an asymptotic solution for a catenoid liquid bridge profile, which is the minimal surface ensuring the minimum total surface energy. Our asymptotic solution is based on a rapid convergent predictor-corrector algorithm that considers different factors including boundary conditions, volume conservation, and geometrical relations while providing the relationship between the liquid bridge profile, bridge radius, half-filling angles, and creeping distances. Therefore, this asymptotic solution of the catenoid of the liquid bridge is applicable to general scenarios of any two neighboring particles of either equal or different sizes having identical or different contact angles. In order to validate the proposed asymptotic solution, we performed comprehensive experiments where the observed and predicted liquid bridge profiles and the resultant capillary forces from both the approaches are found closely matching. Moreover, we also investigate and report the influence of the radii ratio, contact angles, particle distances, and the liquid bridge volumes on its profiles.

1.
A.
Fall
,
B.
Weber
,
M.
Pakpour
,
N.
Lenoir
,
N.
Shahidzadeh
,
J.
Fiscina
,
C.
Wagner
, and
D.
Bonn
, “
Sliding friction on wet and dry sand
,”
Phys. Rev. Lett.
112
,
175502
(
2014
).
2.
F.
Yang
and
Y. P.
Zhao
, “
Effect of a capillary bridge on the crack opening of a penny crack
,”
Soft Matter
12
,
1586
1592
(
2016
).
3.
S. Q.
Gao
,
L.
Jin
,
J. Q.
Du
, and
H. P.
Liu
, “
The liquid-bridge with large gap in micro structural systems
,”
J. Mod. Phys.
2
,
404
415
(
2011
).
4.
A.
Anand
,
J. S.
Curtis
,
C. R.
Wassgren
,
B. C.
Hancock
, and
W. R.
Ketterhagen
, “
Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM)
,”
Chem. Eng. Sci.
64
,
5268
5275
(
2009
).
5.
Y.
Guo
and
J.
Curtis
, “
Discrete element method simulations for complex granular flows
,”
Annu. Rev. Fluid Mech.
47
,
21
46
(
2015
).
6.
B. R.
Lee
and
A. K.
Sum
, “
Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions
,”
Langmuir
31
,
3884
3888
(
2015
).
7.
T.
Ondarçuhu
and
L.
Fabié
, “
Capillary forces in atomic force microscopy and liquid nanodispensing
,” in
Surface Tension in Microsystems
, edited by
P.
Lambert
(
Springer
,
Berlin, Heidelberg
,
2013
).
8.
Z.
Wei
and
Y. P.
Zhao
, “
Growth of liquid bridge in AFM
,”
J. Phys. D: Appl. Phys.
40
,
4368
4375
(
2007
).
9.
O.
Teschkea
,
D. M.
Soares
,
W. E.
Gomes
, and
J. F. V.
Filho
, “
Floating liquid bridge charge dynamics
,”
Phys. Fluids
28
,
012105
(
2016
).
10.
J. P.
He
,
Y. X.
Wu
, and
F. J.
Jiao
, “
Dynamics model of liquid bridge profile in gas metal arc welding by principle of minimizing energy
,”
Chin. J. Mech. Eng.
44
,
230
233
(
2008
).
11.
Y. P.
Zhao
,
Physical Mechanics of Surfaces and Interfaces
(
Science Press
,
Beijing
,
2012
).
12.
F. C.
Yang
,
X. P.
Chen
, and
P. T.
Yue
, “
Surface roughness effects on contact line motion with small capillary number
,”
Phys. Fluids
30
,
012106
(
2018
).
13.
K.
Motegi
,
K.
Fujimura
, and
I.
Ueno
, “
Floquet analysis of spatially periodic thermocapillary convection in a low-Prandtl-number liquid bridge
,”
Phys. Fluids
29
,
074104
(
2017
).
14.
T.
Yano
,
K.
Nishino
,
H.
Kawamura
,
I.
Ueno
, and
S.
Matsumoto
, “
Instability and associated roll structure of Marangoni convection in high Prandtl number liquid bridge with large aspect ratio
,”
Phys. Fluids
27
,
024108
(
2015
).
15.
S.
Ross
, “
The inhibition of foaming. II. A mechanism for the rupture of liquid films by anti-foaming agents
,”
J. Phys. Chem.
54
,
429
436
(
1950
).
16.
M.
Labbé-Laurent
,
A. D.
Law
, and
S.
Dietrich
, “
Liquid bridging of cylindrical colloids in near-critical solvents
,”
Phys. Fluids
147
,
104701
(
2017
).
17.
P. V.
Petkov
and
B. P.
Radoev
, “
Statics and dynamics of capillary bridges
,”
Colloids Surf., A
460
,
18
27
(
2014
).
18.
A. K.
Uguz
,
N. J.
Alvarez
, and
R.
Narayanan
, “
An experimental study on the instability of elliptical liquid bridges
,”
Phys. Fluids
17
,
078106
(
2005
).
19.
W. H.
Meeks
 III
and
J.
Pérez
, “
The classical theory of minimal surfaces
,”
Bull. Am. Math. Soc.
48
,
325
(
2011
).
20.
F.
Behroozi
, “
A fresh look at the catenary
,”
Eur. J. Phys.
35
,
055007
(
2014
).
21.
K.
Morawetz
, “
Theory of water and charged liquid bridge
,”
Phys. Rev. E
86
,
026302
(
2012
).
22.
J. W.
van Honschoten
,
N. R.
Tas
, and
M.
Elwenspo
, “
The profile of a capillary liquid bridge between solid surface
,”
Am. J. Phys.
78
,
277
286
(
2010
).
23.
L.
Yang
,
Y. S.
Tu
, and
H. P.
Fang
, “
Modeling the rupture of a capillary liquid bridge between a sphere and plane
,”
Soft Matter
6
,
6178
6182
(
2010
).
24.
D.
Tiwari
,
L.
Mercury
,
M.
Dijkstra
,
H.
Chaudhary
, and
J. F.
Hernández-Sánchez
, “
Post-pinch-off relaxation of two-dimensional droplets in a Hele-Shaw cell
,”
Phys. Rev. Fluids
3
,
124202
(
2018
).
25.
S.
Tanaka
,
H.
Kawamura
, and
I.
Ueno
, “
Flow structure and dynamic particle accumulation in thermocapillary convection in a liquid bridge
,”
Phys. Fluids
18
,
067103
(
2006
).
26.
H.
Kan
,
H.
Nakamura
, and
S.
Watano
, “
Effect of particle wettability on particle-particle adhesion of colliding particles through droplet
,”
Powder Technol.
302
,
406
413
(
2016
).
27.
S. B. G.
O’Brien
, “
Asymptotics of a series of pendant drops
,”
SIAM J. Appl. Math.
62
,
1569
(
2002
).
28.
S. B. G.
O’Brien
, “
Asymptotics of self intersecting solutions of the pendant drop equations
,”
Z. Angew. Math. Mech.
84
,
158
(
2004
).
29.
M.
Haynes
,
S. B. G.
O’Brien
, and
E. S.
Benil
, “
Asymptotics of a horizontal liquid bridge
,”
Phys. Fluids
28
,
042107
(
2016
).
30.
I.
Masato
and
S.
Taku
, “
In situ observation of a soap-film catenoid—A simple educational physics experiment
,”
Eur. J. Phys.
31
,
357
365
(
2010
).
31.
G. P.
Lian
,
C.
Thornton
, and
M. J.
Adams
, “
Theoretical study of the liquid bridge forces between two rigid spherical bodies
,”
J. Colloid Interface Sci.
161
,
138
147
(
1993
).
32.
V. A.
Lubarda
, “
Mechanics of a liquid drop deposited on a solid substrate
,”
Soft Matter
8
,
10288
(
2012
).
33.
T.
Mikami
,
H.
Kamiya
, and
M.
Horio
, “
Numerical simulation of cohesive powder behavior in a fluidized bed
,”
Chem. Eng. Sci.
53
,
1927
1940
(
1998
).
34.
R. A.
Fisher
, “
On the capillary forces in an ideal soil, correction of formulae given by W. B. Haines
,”
J. Agric. Sci.
16
,
492
(
1926
).
35.
K.
Hotta
,
K.
Takeda
, and
K.
Iinoya
, “
Capillary binding force of a liquid bridge
,”
Powder Technol.
10
,
231
242
(
1974
).
36.
G. P.
Lian
,
C.
Thorntont
, and
M. J.
Adams
, “
Discrete particle simulation of agglomerate impact coalescence
,”
Chem. Eng. Sci.
53
,
3381
3391
(
1998
).
37.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterling
, “
Multistep, multivalue, and predictor-corrector methods
,” in
Numerical Recipes in FORTRAN: The Art of Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge, England
,
1992
), pp.
740
744
.
38.
B. M.
Moudgil
,
Y. I.
Rabinovich
,
M. S.
Esayanur
,
K. D.
Johanson
, and
J.
Adler
, “
Oil mediated particulate adhesion and mechanical properties of powder
,” in
Proceedings of the 4th World Congress on Particle Technology
,
Sydney, Australia
,
2002
.
39.
Y. I.
Rabinovich
,
M. S.
Esayanur
, and
B. M.
Moudgil
, “
Capillary forces between two spheres with a fixed volume liquid bridge: Theory and experiment
,”
Langmuir
21
,
10992
10997
(
2005
).
40.
B. V.
Derjaguin
, “
Untersuchungen ber die reibung und adhesion
,”
Kolloid-Z.
69
,
155
164
(
1934
) (in German).
41.
M. J.
Adams
and
B.
Edmondson
, “
Forces between particles in continuous and discrete liquid media
,” in
Tribology in Particulate Technology
, edited by
B. J.
Briscoe
and
M. J.
Adams
(
IOP Publishing
,
New York
,
1987
), pp.
154
172
.
42.
A. J.
Goldman
,
R. G.
Cox
, and
H.
Brenner
, “
Slow viscous motion of a sphere parallel to a plane wall—I. Motion through a quiescent fluid
,”
Chem. Eng. Sci.
22
,
637
651
(
1967
).
43.
Y. R.
He
,
W. G.
Peng
,
T. Q.
Tang
,
S. N.
Yan
, and
Y. H.
Zha
, “
DEM numerical simulation of wet cohesive particles in a spout fluid bed
,”
Adv. Powder Technol.
27
,
93
104
(
2016
).
44.
A.
Ozela
,
Y.
Gu
,
C. C.
Milioli
,
J.
Kolehmainen
, and
S.
Sundaresan
, “
Towards filtered drag force model for non-cohesive and cohesive particle-gas flows
,”
Phys. Fluids
29
,
103308
(
2017
).
45.
X. S.
Sun
and
M.
Sakai
, “
A liquid bridge model for spherical particles applicable to asymmetric configurations
,”
Chem. Eng. Sci.
182
,
28
43
(
2018
).
46.
Y. C.
Chen
,
Y. Z.
Zhao
,
H. L.
Gao
, and
J. Y.
Zheng
, “
Liquid bridge force between two unequal-sized spheres or a sphere and a plane
,”
Particuology
9
,
374
380
(
2011
).
47.
K.
Miyamoto
and
Y.
Katagiri
, “
Liquid film coating
,” in
Curtain Coating
, edited by
S. F.
Kistler
and
P. M.
Schweizer
(
Springer
,
Dordrecht
,
1997
).
48.
D. Y.
Kwok
and
A. W.
Neumann
, “
Contact angle measurement and contact angle interpretation
,”
Adv. Colloid Interface Sci.
81
,
167
249
(
1999
).
49.
Y.
Zhang
and
J.
Wei
, “
Application of sessile drop method to determine surface free energy of asphalt and aggregate
,”
J. Test. Eval.
40
,
20120060
(
2012
).
50.
G. P.
Lian
and
J.
Seville
, “
The capillary bridge between two spheres: New closed-form equations in a two century old problem
,”
Adv. Colloid Interface Sci.
227
,
53
62
(
2016
).
51.
Z. K.
Wang
,
Y. J.
Teng
, and
M. B.
Liu
, “
A semi-resolved CFD-DEM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy
,”
J. Comput. Phys.
384
,
151
169
(
2019
).
52.
M.
Girardi
,
S.
Radl
, and
S.
Sundaresan
, “
Simulating wet gas–solid fluidized beds using coarse-grid CFD-DEM
,”
Chem. Eng. Sci.
144
,
224
238
(
2016
).
You do not currently have access to this content.