Flow focusing consists in injecting a core liquid into another surrounding flowing sheath liquid. Here we investigate experimentally the influence of imposing pressure to generate coflow of two miscible liquids. We inject water in the central inlet of a cross-junction microfluidic device and different mixtures of glycerol-water in the two lateral inlets. A pressure generator is used to control the flows, and the established flow rates are monitored in both inlets. We draw a state diagram that delimits the regions of the coflow, the inner and outer back flows. We measure the width of the jet as a function of different control parameters: the inlet pressures, the flow rates, the viscosity contrast, and the channel aspect ratio. We show that the jet width can be controlled by tuning the internal to external pressure ratio solely, provided that the viscosity contrast is low. We discuss the possibility to use such a system to center particles in a channel.

1.
T.
Cubaud
and
T. G.
Mason
, “
High-viscosity fluid threads in weakly diffusive microfluidic systems
,”
New J. Phys.
11
,
075029
(
2009
).
2.
P.
Garstecki
,
I.
Gitlin
,
W.
DiLuzio
,
G. M.
Whitesides
,
E.
Kumacheva
, and
H. A.
Stone
, “
Formation of monodisperse bubbles in a microfluidic flow-focusing device
,”
Appl. Phys. Lett.
85
,
2649
2651
(
2004
).
3.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
, “
Formation of dispersions using ‘flow focusing’ in microchannels
,”
Appl. Phys. Lett.
82
,
364
366
(
2003
).
4.
O. J.
Dressler
,
X. C.
i Solvas
, and
A. J.
deMello
, “
Chemical and biological dynamics using droplet-based microfluidics
,”
Annu. Rev. Anal. Chem.
10
,
1
24
(
2017
).
5.
C. M.
Hwang
,
A.
Khademhosseini
,
Y.
Park
,
K.
Sun
, and
S.-H.
Lee
, “
Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering
,”
Langmuir
24
,
6845
6851
(
2008
).
6.
T.
Cubaud
and
T. G.
Mason
, “
Capillary threads and viscous droplets in square microchannels
,”
Phys. Fluids
20
,
053302
(
2008
).
7.
T.
Cubaud
and
T. G.
Mason
, “
Formation of miscible fluid microstructures by hydrodynamic focusing in plane geometries
,”
Phys. Rev. E
78
,
056308
(
2008
).
8.
O.
Bonhomme
,
J.
Leng
, and
A.
Colin
, “
Microfluidic wet-spinning of alginate microfibers: A theoretical analysis of fiber formation
,”
Soft Matter
8
,
10641
(
2012
).
9.
X.
Hu
and
T.
Cubaud
, “
Inertial destabilization of highly viscous microfluidic stratifications
,”
Phys. Rev. Fluids
1
,
044101
(
2016
).
10.
B.
Laborie
,
F.
Rouyer
,
D. E.
Angelescu
, and
E.
Lorenceau
, “
On the stability of the production of bubbles in yield-stress fluid using flow-focusing and t-junction devices
,”
Phys. Fluids
28
,
063103
(
2016
).
11.
Z.
Li
,
S. Y.
Mak
,
A.
Sauret
, and
H. C.
Shum
, “
Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy
,”
Lab Chip
14
,
744
749
(
2014
).
12.
W.
Zeng
,
I.
Jacobi
,
D. J.
Beck
,
S.
Li
, and
H. A.
Stone
, “
Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels
,”
Lab Chip
15
,
1110
1115
(
2015
).
13.
T.
Ward
,
M.
Faivre
,
M.
Abkarian
, and
H. A.
Stone
, “
Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping
,”
Electrophoresis
26
,
3716
3724
(
2005
).
14.
S.
Lignel
,
A.-V.
Salsac
,
A.
Drelich
,
E.
Leclerc
, and
I.
Pezron
, “
Water-in-oil droplet formation in a flow-focusing microsystem using pressure- and flow rate-driven pumps
,”
Colloids Surf., A
531
,
164
172
(
2017
).
15.
W.
Zeng
,
I.
Jacobi
,
S.
Li
, and
H. A.
Stone
, “
Variation in polydispersity in pump-and pressure-driven micro-droplet generators
,”
J. Micromech. Microeng.
25
,
115015
(
2015
).
16.
X.
Xuan
,
J.
Zhu
, and
C.
Church
, “
Particle focusing in microfluidic devices
,”
Microfluid. Nanofluid.
9
,
1
16
(
2010
).
17.
M.
Faivre
,
M.
Abkarian
,
K.
Bickraj
, and
H. A.
Stone
, “
Geometrical focusing of cells in a microfluidic device: An approach to separate blood plasma
,”
Biorheology
43
,
147
159
(
2006
).
18.
A. G.
Håti
,
D. C.
Bassett
,
J. M.
Ribe
,
P.
Sikorski
,
D. A.
Weitz
, and
B. T.
Stokke
, “
Versatile, cell and chip friendly method to gel alginate in microfluidic devices
,”
Lab Chip
16
,
3718
3727
(
2016
).
19.
A.
Blin
,
A.
Le Goff
,
A.
Magniez
,
S.
Poirault-Chassac
,
B.
Teste
,
G.
Sicot
,
K. A.
Nguyen
,
F. S.
Hamdi
,
M.
Reyssat
, and
D.
Baruch
, “
Microfluidic model of the platelet-generating organ: Beyond bone marrow biomimetics
,”
Sci. Rep.
6
,
21700
(
2016
).
20.
Y.
Xia
and
G. M.
Whitesides
, “
Soft lithography
,”
Annu. Rev. Mater. Sci.
28
,
153
184
(
1998
).
21.
G. M.
Whitesides
,
E.
Ostuni
,
S.
Takayama
,
X.
Jiang
, and
D. E.
Ingber
, “
Soft lithography in biology and biochemistry
,”
Annu. Rev. Biomed. Eng.
3
,
335
373
(
2001
).
22.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2014
).
23.
T.
Cubaud
and
S.
Notaro
, “
Regimes of miscible fluid thread formation in microfluidic focusing sections
,”
Phys. Fluids
26
,
122005
(
2014
).
24.
K. W.
Oh
,
K.
Lee
,
B.
Ahna
, and
E. P.
Furlani
, “
Design of pressure-driven microfluidic networks using electric circuit analogy
,”
Lab Chip
12
,
515
545
(
2012
).
25.
L. W.
Bosart
and
A. O.
Snoddy
, “
Specific gravity of glycerol
,”
Ind. Eng. Chem.
20
,
1377
1379
(
1928
).
26.
A.
Volk
and
C. J.
Kähler
, “
Density model for aqueous glycerol solutions
,”
Exp. Fluids
59
,
75
(
2018
).
27.
H.
Bruus
,
Theoretical Microfluidics
(
Oxford University Press
,
Oxford
,
2008
), Vol. 18.
28.
D.
Vesperini
,
O.
Chaput
,
N.
Munier
,
P.
Maire
,
F.
Edwards-Lévy
,
A.-V.
Salsac
, and
A.
Le Goff
, “
Deformability- and size-based microcapsule sorting
,”
Med. Eng. Phys.
48
,
68
74
(
2017
).
29.
C.
Rorai
,
F.
Nason
,
L.
Zhu
,
G.
Casagrande
,
G.
Dubini
, and
L.
Brandt
, “
Hydrodynamic focusing of an elastic capsule in Stokes flow: An exploratory numerical study
,” in
iUTAM Symposium on Dynamics of Capsules, Vesicles and Cells in Flow, 15–19 July 2014, Compiègne, France
[
Proc. IUTAM
16
,
41
49
(
2015
)].
You do not currently have access to this content.