Following our previous work [Kumar et al., “Fluidic injectors for supersonic jet control,” Phys. Fluids 30(12), 126101 (2018)], we experimentally investigate the effect of fluidic injection on the mixing enhancement of a Mach 2.0 jet. The mass flow rate ratio Cm of the injectors to that of the main jet and the expansion ratio pe/pa (where pe and pa are the nozzle exit and atmospheric pressures, respectively) to understand the mixing capability at design and off-design conditions are examined in detail. Extensive Pitot pressure measurements are performed along the jet centerline, and the jet stream has been visualized using the shadowgraph technique in the orthogonal planes of the manipulated jet. The mixing capability of the manipulated jet quantified based on the reduction in supersonic core length ΔLc* exhibits a strong dependence on Cm and pe/pa. Empirical scaling analysis of the jet control reveals that the relationship ΔLc* = f1(Cm, pe, pa, D, d) may be reduced to ΔLc* = f2(ξ), where f1 and f2 are different functions and the scaling factor ξ = MRpe/pa(Dd)1.3, where MR is the momentum ratio of the injector to the main jet, D and d are the nozzle exit diameter and the injector exit diameter, respectively. The scaling parameter ΔLc* = f2(ξ) provides important insights into the jet control physics.

1.
H. G.
Sung
and
J. Y.
Heo
, “
Fluidic thrust vector control of supersonic jet using coflow injection
,”
J. Propul. Power
28
(
4
),
858
861
(
2012
).
2.
C.
Guo
,
Z.
Wei
,
K.
Xie
, and
N.
Wang
, “
Thrust control by fluidic injection in solid rocket motors
,”
J. Propul. Power
33
(
4
),
815
829
(
2017
).
3.
R. B.
Caeti
and
I. M.
Kalkhoran
, “
Jet noise reduction via fluidic injection
,”
AIAA J.
52
(
1
),
26
32
(
2013
).
4.
B.
Zhang
,
K.
Liu
,
Y.
Zhou
,
S.
To
, and
J.
Tu
, “
Active drag reduction of a high-drag Ahmed body based on steady blowing
,”
J. Fluid Mech.
856
,
351
396
(
2018
).
5.
P. A.
Kumar
,
S. A.
Kumar
,
A. S.
Mitra
, and
E.
Rathakrishnan
, “
Fluidic injectors for supersonic jet control
,”
Phys. Fluids
30
(
12
),
126101
(
2018
).
6.
A. K.
Perumal
and
Y.
Zhou
, “
Parametric study and scaling of jet manipulation using an unsteady minijet
,”
J. Fluid Mech.
848
,
592
630
(
2018
).
7.
S.
Bernhard
and
M.
Mihai
, “
Fluidic injection scenarios for shock pattern manipulation in exhausts
,”
AIAA J.
56
(
12
),
4640
4644
(
2018
).
8.
S. C. M.
Yu
,
K. S.
Lim
,
W.
Chao
, and
X. P.
Goh
, “
Mixing enhancement in subsonic jet flow using the air-tab technique
,”
AIAA J.
46
(
11
),
2966
2969
(
2008
).
9.
B.
Henderson
, “
Fifty years of fluidic injection for jet noise reduction
,”
Int. J. Aeroacoustics
9
(
1
),
91
122
(
2010
).
10.
M.
Davis
, “
Variable control of jet decay
,”
AIAA J.
20
,
606
609
(
1982
).
11.
P.
Behrouzi
and
J.
McGuirk
, “
Experimental studies of tab geometry effects on mixing enhancement of an axisymmetric jet
,”
JSME Int. J., Ser. B
41
(
4
),
908
917
(
1998
).
12.
A. P.
Kumar
,
S. B.
Verma
, and
E.
Rathakrishnan
, “
Experimental study of subsonic and sonic jets controlled by air tabs
,”
J. Propul. Power
31
(
5
),
1473
1481
(
2015
).
13.
D.
Cuppoletti
,
M.
Perrino
, and
E.
Gutmark
, “
Fluidic injection effects on acoustics of a supersonic jet at various Mach numbers
,” in
17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference)
(
AIAA
,
2011
), p.
2900
.
14.
E.
Laurendeau
,
P.
Jordan
,
J. P.
Bonnet
,
J.
Delville
,
P.
Parnaudeau
, and
E.
Lamballais
, “
Subsonic jet noise reduction by fluidic control: The interaction region and the global effect
,”
Phys. Fluids
20
(
10
),
101519
(
2008
).
15.
M. A.
Kamran
and
J.
McGuirk
, “
Subsonic jet mixing via active control using steady and pulsed control jets
,”
AIAA J.
49
(
4
),
712
724
(
2011
).
16.
N.
Chauvet
,
S.
Deck
, and
L.
Jacquin
, “
Numerical study of mixing enhancement in a supersonic round jet
,”
AIAA J.
45
,
1675
1687
(
2007
).
17.
H. E.
Hafsteinsson
,
L. E.
Eriksson
,
N.
Andersson
,
D. R.
Cuppoletti
, and
E.
Gutmark
, “
Noise control of supersonic jet with steady and flapping fluidic injection
,”
AIAA J.
53
(
11
),
3251
3272
(
2015
).
18.
D. R.
Cuppoletti
and
E.
Gutmark
, “
Fluidic injection on a supersonic jet at various Mach numbers
,”
AIAA J.
52
(
2
),
293
306
(
2014
).
19.
M.
Coderoni
,
A. S.
Lyrintzis
, and
G. A.
Blaisdell
, “
LES of unheated and heated supersonic jets with fluidic injection
,” in
2018 AIAA Aerospace Sciences Meeting
(
AIAA
,
2018
), p.
0257
.
20.
M.
Coderoni
,
A. S.
Lyrintzis
, and
G. A.
Blaisdell
, “
Aeroacoustics of supersonic jets with fluidic injection
,” in
23rd AIAA/CEAS Aeroacoustics Conference
(
AIAA
,
2017
), p.
3210
.
21.
T.
Hawkes
, “
Computational analysis of an axisymmetric fluidic injection nozzle
,” in
34th Aerospace Sciences Meeting and Exhibit
(
AIAA
,
1996
), p.
116
.
22.
B.
Semlitsch
,
D. R.
Cuppoletti
,
E. J.
Gutmark
, and
M.
Mihaescu
, “
Transforming the shock pattern of supersonic jets using fluidic injection
,”
AIAA J.
57
(
5
),
1
11
(
2019
).
23.
B.
Greska
,
A.
Krothapalli
,
J.
Seiner
,
B.
Jansen
, and
L.
Ukeiley
, “
The effects of microjet injection on an F404 jet engine
,” in
11th AIAA/CEAS Aeroacoustics Conference
(
AIAA
,
2005
), p.
3047
.
24.
A. P.
Kumar
and
E.
Rathakrishnan
, “
Triangular tabs for supersonic jet mixing enhancement
,”
Aeronaut. J.
118
(
1209
),
1245
1278
(
2014
).
25.
T. G.
Malmstroem
,
A. T.
Kirkpatrick
,
B.
Christensen
, and
K. D.
Knappmiller
, “
Centreline velocity decay measurements in low-velocity axisymmetric jets
,”
J. Fluid Mech.
346
,
363
377
(
1997
).
26.
M. Y.
Ali
and
F.
Alvi
, “
Jet arrays in supersonic crossflow—An experimental study
,”
Phys. Fluids
27
(
12
),
126102
(
2015
).
27.
S. L.
Strack
, “
Supersonic pitot tube measurements at an angle of attack
,”
AIAA J.
2
(
4
),
778
779
(
1964
).
28.
H.
Katanoda
,
Y.
Miyazato
,
M.
Masuda
, and
K.
Matsuo
, “
Pitot pressures of correctly-expanded and underexpanded free jets from axisymmetric supersonic nozzles
,”
Shock Waves
10
(
2
),
95
101
(
2000
).
29.
K. A.
Phalnikar
,
R.
Kumar
, and
F. S.
Alvi
, “
Experiments on free and impinging supersonic microjets
,”
Exp. Fluids
44
(
5
),
819
830
(
2008
).
30.
H.
Li
and
G.
Ben-Dor
, “
Mach reflection wave configuration in two-dimensional supersonic jets of overexpanded nozzles
,”
AIAA J.
36
(
3
),
488
491
(
1998
).
31.
S. I.
Baranovsky
and
J. A.
Schetz
, “
Effect of injection angle on liquid injection in supersonic flow
,”
AIAA J.
18
(
6
),
625
629
(
1980
).
32.
D.
Papamoschou
and
D. G.
Hubbard
, “
Visual observations of supersonic transverse jets
,”
Exp. Fluids
14
(
6
),
468
476
(
1993
).
33.
A.
Ben-Yakar
,
M. G.
Mungal
, and
R. K.
Hanson
, “
Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows
,”
Phys. Fluids
18
(
2
),
026101
(
2006
).
34.
M. D.
Dziuba
and
T.
Rossmann
, “
Mixing enhancement of modulated transverse sonic jets in a supersonic crossflow
,”
J. Propul. Power
35
,
669
674
(
2019
).
35.
A.
Pizzaia
and
T.
Rossmann
, “
Effect of boundary layer thickness on transverse sonic jet mixing in a supersonic turbulent crossflow
,”
Phys. Fluids
30
(
11
),
115104
(
2018
).
36.
A. H.
Shapiro
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
(
Ronald Press
,
1953
), Vol. 1.
You do not currently have access to this content.