In the present work, numerical simulations are carried out to investigate underexpanded methane jets with phase separation effects. In order to predict the fuel injection and the mixture formation in the constant volume chamber, a hybrid, pressure-based solver is combined with a vapor-liquid equilibrium model and a moving mesh methodology. The thermodynamic models are based on the cubic equation of state of Soave, Redlich, and Kwong. A compressibility correction for the widely known SST turbulence model is implemented additionally. Application-relevant simulations with a total fuel pressure of 300 bars and five different chamber pressures ranging from 12 to 60 bars were defined. Furthermore, the influence of two fuel and chamber temperatures, 294 and 363 K, is analyzed. Depending on the chamber pressure, two different flow structures of the potential core can be distinguished: (1) A series of typical shock barrels for small pressure ratios and moderately underexpanded jets and (2) a shear layer consisting of a two-phase mixture which enfolds the potential core for high pressure ratios and highly underexpanded jets. Increasing the fuel temperature leads to less significant phase separations, while an increase in the chamber pressure does not affect the structure of the potential core. A comparison with experimental measurements shows a very good agreement of the simulated structure of the potential core, providing evidence that the underlying phenomena are predicted correctly and suggesting that a moving mesh strategy and consistent two-phase thermodynamics implementation are necessary for a physical representation of high-pressure injections.

1.
T. C.
Adamson
, Jr.
, “
On the structure of jets from highly underexpanded nozzles into still air
,”
J. Aerosp. Sci.
26
,
16
24
(
1959
).
2.
A.
Birch
,
D.
Brown
,
M.
Dodson
, and
F.
Swaffield
, “
The structure and concentration decay of high pressure jets of natural gas
,”
Combust. Sci. Technol.
36
,
249
261
(
1984
).
3.
A.
Birch
,
D.
Hughes
, and
F.
Swaffield
, “
Velocity decay of high pressure jets
,”
Combust. Sci. Technol.
52
,
161
171
(
1987
).
4.
H.
Ashkenas
and
F. S.
Sherman
, “
Structure and utilization of supersonic free jets in low density wind tunnels
,” NASA-CR-60423,
1965
.
5.
S.
Crist
,
D.
Glass
, and
P.
Sherman
, “
Study of the highly underexpanded sonic jet
,”
AIAA J.
4
,
68
71
(
1966
).
6.
B.
Ewan
and
K.
Moodie
, “
Structure and velocity measurements in underexpanded jets
,”
Combust. Sci. Technol.
45
,
275
288
(
1986
).
7.
D.
Carlson
and
C.
Lewis
, “
Normal shock location in underexpanded gas and gas-particle jets
,”
AIAA J.
2
,
776
777
(
1964
).
8.
E. S.
Love
,
C. E.
Grigsby
,
L. P.
Lee
, and
M. J.
Woodling
, “
Experimental and theoretical studies of axisymmetric free jets
,” NASA-TR-R-6,
1959
.
9.
M.
Norman
,
K.-H.
Winkler
,
L.
Smarr
, and
M.
Smith
, “
Structure and dynamics of supersonic jets
,”
Astron. Astrophys.
113
,
285
302
(
1982
).
10.
P.
Birkby
and
G. J.
Page
, “
Numerical predictions of turbulent underexpanded sonic jets using a pressure-based methodology
,”
Proc. Inst. Mech. Eng., Part G
215
,
165
173
(
2001
).
11.
M.
Fairweather
and
K.
Ranson
, “
Prediction of underexpanded jets using compressibility-corrected, two-equation turbulence models
,”
Prog. Comput. Fluid Dyn. Int. J.
6
,
122
128
(
2006
).
12.
C.
Gorlé
,
M.
Gamba
, and
F.
Ham
,
Investigation of an Underexpanded Hydrogen Jet in Quiescent Air Using Numerical Simulations and Experiments
, Center for Turbulence Research Annual Research Briefs (
Center for Turbulence Research
,
Stanford, CA
,
2010
).
13.
P.
Cumber
,
M.
Fairweather
,
S.
Falle
, and
J.
Giddings
, “
Predictions of the structure of turbulent, moderately underexpanded jets
,”
J. Fluids Eng.
116
,
707
713
(
1994
).
14.
P.
Cumber
,
M.
Fairweather
,
S.
Falle
, and
J.
Giddings
, “
Predictions of the structure of turbulent, highly underexpanded jets
,”
J. Fluids Eng.
117
,
599
604
(
1995
).
15.
Y.
Otobe
,
H.
Kashimura
,
S.
Matsuo
,
T.
Setoguchi
, and
H.-D.
Kim
, “
Influence of nozzle geometry on the near-field structure of a highly underexpanded sonic jet
,”
J. Struct. Eng.
24
,
281
293
(
2008
).
16.
A.
Velikorodny
and
S.
Kudriakov
, “
Numerical study of the near-field of highly underexpanded turbulent gas jets
,”
Int. J. Hydrogen Energy
37
,
17390
17399
(
2012
).
17.
F.
Müller
,
M.
Schmitt
,
Y. M.
Wright
, and
K.
Boulouchos
, “
Determination of supersonic inlet boundaries for gaseous engines based on detailed RANS and LES simulations
,”
SAE Int. J. Engines
6
,
1532
1543
(
2013
).
18.
M. M.
Orescanin
and
J.
Austin
, “
Exhaust of underexpanded jets from finite reservoirs
,”
J. Propul. Power
26
,
744
753
(
2010
).
19.
B.
Xu
,
J.
Zhang
,
J.
Wen
,
S.
Dembele
, and
J.
Karwatzki
, “
Numerical study of a highly under-expanded hydrogen jet
,”in
International Conference on Hydrogen Safety
,
2005
.
20.
F.
Bonelli
,
A.
Viggiano
, and
V.
Magi
, “
A numerical analysis of hydrogen underexpanded jets under real gas assumption
,”
J. Fluids Eng.
135
,
121101
(
2013
).
21.
R.
Khaksarfard
,
M.
Kameshki
, and
M.
Paraschivoiu
, “
Numerical simulation of high pressure release and dispersion of hydrogen into air with real gas model
,”
Shock Waves
20
,
205
216
(
2010
).
22.
J.
Nagao
,
S.
Matsuo
,
M.
Mohammad
,
T.
Setoguchi
, and
H. D.
Kim
, “
Numerical study on characteristics of real gas flow through a critical nozzle
,”
Int. J. Turbo Jet-Engines
29
,
21
27
(
2012
).
23.
A.
Hamzehloo
and
P.
Aleiferis
, “
Large eddy simulation of highly turbulent under-expanded hydrogen and methane jets for gaseous-fuelled internal combustion engines
,”
Int. J. Hydrogen Energy
39
,
21275
21296
(
2014
).
24.
A.
Hamzehloo
and
P.
Aleiferis
, “
Gas dynamics and flow characteristics of highly turbulent under-expanded hydrogen and methane jets under various nozzle pressure ratios and ambient pressures
,”
Int. J. Hydrogen Energy
41
,
6544
6566
(
2016
).
25.
A.
Hamzehloo
and
P.
Aleiferis
, “
Numerical modelling of transient under-expanded jets under different ambient thermodynamic conditions with adaptive mesh refinement
,”
Int. J. Heat Fluid Flow
61
,
711
729
(
2016
).
26.
V.
Vuorinen
,
A.
Wehrfritz
,
C.
Duwig
, and
B.
Boersma
, “
Large-eddy simulation on the effect of injection pressure and density on fuel jet mixing in gas engines
,”
Fuel
130
,
241
250
(
2014
).
27.
V.
Vuorinen
,
J.
Yu
,
S.
Tirunagari
,
O.
Kaario
,
M.
Larmi
,
C.
Duwig
, and
B.
Boersma
, “
Large-eddy simulation of highly underexpanded transient gas jets
,”
Phys. Fluids
25
,
016101
(
2013
).
28.
L.
Qiu
and
R. D.
Reitz
, “
An investigation of thermodynamic states during high-pressure fuel injection using equilibrium thermodynamics
,”
Int. J. Multiphase Flow
72
,
24
38
(
2015
).
29.
J.
Matheis
and
S.
Hickel
, “
Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN spray A
,”
Int. J. Multiphase Flow
99
,
294
311
(
2018
).
30.
C.
Traxinger
,
H.
Müller
,
M.
Pfitzner
,
S.
Baab
,
G.
Lamanna
,
B.
Weigand
,
J.
Matheis
,
C.
Stemmer
,
N. A.
Adams
, and
S.
Hickel
, “
Experimental and numerical investigation of phase separation due to multi-component mixing at high-pressure conditions
,” in
Proceedings ILASS–Europe 2017, 28th Conference on Liquid Atomization and Spray Systems
(
Universitat Politècnica de València
,
2017
).
31.
C.
Traxinger
,
M.
Banholzer
, and
M.
Pfitzner
, “
Real-gas effects and phase separation in underexpanded jets at engine-relevant conditions
,” in
2018 AIAA Aerospace Sciences Meeting
(
AIAA
,
2018
), p.
1815
.
32.
B.
Schneider
, “
Experimentelle untersuchung zur spraystruktur in transienten, verdampfenden und nicht verdampfenden brennstoffstrahlen unter hochdruck
,” Ph.D. thesis,
Swiss Federal Institute of Technology, ETHZ
,
2003
, thesis dissertation, No. 15004.
33.
B.
Schneider
,
K.
Boulouchos
, and
B.
Ineichen
, “
Experimental investigation into diesel-sprays under evaporating and non-evaporating conditions in a high temperature and high pressure cell
,” in
3rd Meeting of the Greek Section of the Combustion Institute
,
Patras
,
7–8 November 2003
.
34.
K.
Boulouchos
,
O.
Margari
,
A.
Escher
,
S. B.
Barroso
,
G.
And
, and
S.
Kunte
, “
Optical diagnostic on diesel sprays for the validation of computer aided simulation
,” in
6. Internationales Symposium für Verbrennungsdiagnostik
,
Baden-Baden
,
June 2004
.
35.
Y. M.
Wright
,
O.-N.
Margari
,
K.
Boulouchos
,
G.
De Paola
, and
E.
Mastorakos
, “
Experiments and simulations of n-heptane spray auto-ignition in a closed combustion chamber at diesel engine conditions
,”
Flow, Turbul. Combust.
84
,
49
78
(
2010
).
36.
R.
Baert
,
P.
Frijters
,
B.
Somers
,
C.
Luijten
, and
W.
de Boer
, “
Design and operation of a high pressure, high temperature cell for HD diesel spray diagnostics: Guidelines and results
,” SAE Technical Paper,
2009
.
37.
C.
Barro
,
P.
Meyer
, and
K.
Boulouchos
, “
Optical investigations of soot reduction mechanisms using post-injections in a cylindrical constant volume chamber (ccvc)
,” Technical Report, SAE Technical Paper,
2014
.
38.
S. E.
Iannuzzi
,
C.
Barro
,
K.
Boulouchos
, and
J.
Burger
, “
Combustion behavior and soot formation/oxidation of oxygenated fuels in a cylindrical constant volume chamber
,”
Fuel
167
,
49
59
(
2016
).
39.
G.
Settles
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
(
Springer-Verlag
,
Berlin, Germany
,
2001
), p.
376
.
40.
L.
Pickett
,
S.
Kook
, and
T.
Williams
, “
Visualization of diesel spray penetration, cool-flame, ignition, high-temperature combustion, and soot formation using high-speed imaging
,”
SAE Int. J. Engines
2
(
1
),
439
459
(
2009
).
41.
J.
Naber
and
D.
Siebers
, “
Effects of gas density and vaporization on penetration and dispersion of diesel sprays
,” SAE Technical Paper,
1996
.
42.
J.
Nerva
, “
An assessment of fuel physical and chemical properties in the combustion of a diesel spray
,” Ph.D. thesis,
Universitat Politecnica de Valencia
,
2013
.
43.
L.
Pickett
,
J.
Manin
,
C.
Genzale
,
D.
Siebers
,
M.
Musculus
, and
C.
Idicheria
, “
Relationship between diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction
,”
SAE Int. J. Engines
4
(
1
),
764
799
(
2011
).
44.
J.
Pastor
,
R.
Payri
,
J.
García-Oliver
, and
J.
Nerva
, “
Schlieren measurements of the ECN-spray A penetration under inert and reacting conditions
,” SAE Technical Paper,
2012
.
45.
J.
Pastor
,
R.
Payri
,
J.
García-Oliver
, and
F.
Briceño
, “
Schlieren methodology for the analysis of transient diesel flame evolution
,”
SAE Int. J. Engines
6
(
3
),
1661
1676
(
2013
).
46.
J.
Pastor
,
J.
Arrègle
, and
A.
Palomares
, “
Diesel spray image segmentation with a likelihood ratio test
,”
Appl. Opt.
40
(
17
),
2876
2885
(
2001
).
47.
J.
Pastor
,
J.
Arrègle
,
J.
García
, and
L.
Zapata
, “
Segmentation of diesel spray images with log-likelihood ratio test algorithm for non-Gaussian distributions
,”
Appl. Opt.
46
(
6
),
888
899
(
2007
).
48.
T. H.
Chung
,
M.
Ajlan
,
L. L.
Lee
, and
K. E.
Starling
, “
Generalized multiparameter correlation for nonpolar and polar fluid transport properties
,”
Ind. Eng. Chem. Res.
27
,
671
679
(
1988
).
49.
M. V.
Kraposhin
,
M.
Banholzer
,
M.
Pfitzner
, and
I. K.
Marchevsky
, “
A hybrid pressure-based solver for nonideal single-phase fluid flows at all speeds
,”
Int. J. Numer. Methods Fluids
88
,
79
99
(
2018
).
50.
R. I.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
51.
A.
Kurganov
and
E.
Tadmor
, “
New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations
,”
J. Comput. Phys.
160
,
241
282
(
2000
).
52.
F.
Menter
and
T.
Esch
, “
Elements of industrial heat transfer predictions
,” in
Proceedings 16th Brazilian Congress of Mechanical Engineering (COBEM)
(
2001
), Vol. 109, pp.
117
127
.
53.
W.
Jones
and
B. E.
Launder
, “
The prediction of laminarization with a two-equation model of turbulence
,”
Int. J. Heat Mass Transfer
15
,
301
314
(
1972
).
54.
D. C.
Wilcox
, “
Reassessment of the scale-determining equation for advanced turbulence models
,”
AIAA J.
26
,
1299
1310
(
1988
).
55.
S.
Sarkar
and
B.
Lakshmanan
, “
Application of a Reynolds stress turbulence model to the compressible shear layer
,”
AIAA J.
29
,
743
749
(
1991
).
56.
G.
Soave
, “
Equilibrium constants from a modified Redlich-Kwong equation of state
,”
Chem. Eng. Sci.
27
,
1197
1203
(
1972
).
57.
R. C.
Reid
,
J. M.
Prausnitz
, and
B. E.
Poling
,
The Properties of Gases and Liquids
(
McGraw-Hill, New York
,
1987
).
58.
B. E.
Poling
,
J. M.
Prausnitz
,
J. P.
O’connell
 et al.,
The Properties of Gases and Liquids
(
McGraw-Hill
,
New York
,
2001
), Vol. 5.
59.
A.
Burcat
,
B.
Ruscic
, and
E.
Goos
, Anl-05/20 and tae 960 technion-iit,
Aerospace Engineering and Argonne National Laboratory Chemistry Division
,
2005
.
60.
I. H.
Bell
,
J.
Wronski
,
S.
Quoilin
, and
V.
Lemort
, “
Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop
,”
Ind. Eng. Chem. Res.
53
,
2498
2508
(
2014
).
61.
M.
Modell
and
R. C.
Reid
,
Thermodynamics and Its Applications
(
Prentice-Hall
,
1983
).
62.
M. L.
Michelsen
, “
The isothermal flash problem. Part I. Stability
,”
Fluid Phase Equilib.
9
,
1
19
(
1982
).
63.
J. R.
Elliott
and
C. T.
Lira
,
Introductory Chemical Engineering Thermodynamics
(
Prentice Hall PTR
,
Upper Saddle River, NJ
,
1999
), Vol. 184.
64.
M.
Banholzer
,
H.
Müller
, and
M.
Pfitzner
, “
Numerical investigation of the flow structure of underexpanded jets in quiescent air using real-gas thermodynamics
,” in
23rd AIAA Computational Fluid Dynamics Conference
(
AIAA
,
2017
), p.
4289
.
65.
J.
Abraham
, “
Entrapment characteristics of transient gas jets
,”
Numer. Heat Transfer, Part A
30
,
347
364
(
1996
).
66.
P. G.
Hill
and
P.
Ouellette
, “
Transient turbulent gaseous fuel jets for diesel engines
,”
J. Fluids Eng.
121
,
93
101
(
1999
).
67.
J.
Gerold
,
P.
Vogl
, and
M.
Pfitzner
, “
New correlation of subsonic, supersonic and cryo gas jets validated by highly accurate Schlieren measurements
,”
Exp. Fluids
54
,
1542
(
2013
).
68.
D. V.
Nichita
,
P.
Khalid
, and
D.
Broseta
, “
Calculation of isentropic compressibility and sound velocity in two-phase fluids
,”
Fluid Phase Equilib.
291
,
95
102
(
2010
).
69.
S.
Baab
,
G.
Lamanna
, and
B.
Weigand
, “
Two-phase disintegration of high-pressure retrograde fluid jets at near-critical injection temperature discharged into a subcritical pressure atmosphere
,”
Int. J. Multiphase Flow
107
,
116
130
(
2018
).
You do not currently have access to this content.