We propose a feasible method for constructing knotted vortex tubes with the finite thickness and arbitrary complexity and develop an accurate algorithm to implement this method in numerical simulations. The central axis of the knotted vortex tube is determined by the parametric equation of a given smooth and non-degenerate closed curve. The helicity of the vortex tube is only proportional to the writhe of the vortex axis, a geometric measure for coiling of vortex tubes. This vortex construction can facilitate the investigation of the conversion of writhe to twist in the helicity evolution of knotted vortex tubes. As examples, we construct velocity–vorticity fields of trefoil, cinquefoil, and septafoil vortex knots. These vortex knots are used as initial conditions in the direct numerical simulation of viscous incompressible flows in a periodic box. In the evolution of vortex knots from simple flows to turbulent-like flows, all the knots are first untied. Then the vortex topology is invariant and the helicity is almost conserved for the trefoil knot, whereas the helicity decays rapidly during the breakdown and coaxial interactions of pinch-off vortex rings for cinquefoil and septafoil knots.

1.
J. J.
Moreau
, “
Constantes d’un îlot tourbillonnaire en fluide parfait barotrope
,”
C. R. Acad. Sci. Paris
252
,
2810
2812
(
1961
).
2.
H. K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
3.
D.
Kleckner
and
W. T. M.
Irvine
, “
Creation and dynamics of knotted vortices
,”
Nat. Phys.
9
,
253
258
(
2013
).
4.
R. L.
Ricca
and
H. K.
Moffatt
, “
The helicity of a knotted vortex filament
,” in
Topological Aspects of the Dynamics of Fluids and Plasmas
(
Springer
,
1992
), pp.
225
236
.
5.
A.
Martinez
,
M.
Ravnik
,
B.
Lucero
,
R.
Visvanathan
,
S.
Z̆umer
, and
I. I.
Smalyukh
, “
Mutually tangled colloidal knots and induced defect loops in nematic fields
,”
Nat. Mater.
13
,
258
263
(
2014
).
6.
M. W.
Scheeler
,
W. M.
van Rees
,
H.
Kedia
,
D.
Kleckner
, and
W. T. M.
Irvine
, “
Complete measurement of helicity and its dynamics in vortex tube
,”
Science
357
,
487
491
(
2017
).
7.
M. A.
Berger
and
G. B.
Field
, “
The topological properties of magnetic helicity
,”
J. Fluid Mech.
147
,
133
148
(
1984
).
8.
W. D.
Su
, “
Helicity analysis and differential geometry
,” Ph.D. thesis,
Peking University
,
1998
.
9.
J.
Cantarella
, “
A general mutual helicity formula
,”
Proc. R. Soc. London, Ser. A
456
,
2771
2779
(
2000
).
10.
M. D.
Kruskal
and
R. M.
Kulsrud
, “
Equilibrium of a magnetically confined plasma in a toroid
,”
Phys. Fluids
1
,
265
274
(
1958
).
11.
A. Y. K.
Chui
and
H. K.
Moffatt
, “
The energy and helicity of knotted magnetic flux tubes
,”
Proc. R. Soc. London, Ser. A
451
,
609
629
(
1995
).
12.
H. K.
Moffatt
and
R. L.
Ricca
, “
Helicity and the Călugăreanu invariant
,”
Proc. R. Soc. London, Ser. A
439
,
411
429
(
1992
).
13.
G.
Călugăreanu
, “
L’intégral de Gauss et l’analyse des noeuds tridimensionnels
,”
Rev. Math. Pures Appl.
4
,
5
20
(
1959
).
14.
W. F.
Pohl
, “
The self-linking number of a closed space curve
,”
J. Math. Mech.
17
,
975
985
(
1968
).
15.
M. A.
Berger
, “
Introduction to magnetic helicity
,”
Plasma Phys. Controlled Fusion
41
,
B167
(
1999
).
16.
M. W.
Scheeler
,
D.
Kleckner
,
D.
Proment
,
G. L.
Kindlmann
, and
W. T. M.
Irvine
, “
Helicity conservation by flow across scales in reconnecting vortex links and knots
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
15350
15355
(
2014
).
17.
R. M.
Kerr
, “
Topology of interacting coiled vortex rings
,”
J. Fluid Mech.
854
,
R2
(
2018
).
18.
H. K.
Moffatt
, “
Helicity-invariant even in a viscous fluid
,”
Science
357
,
448
(
2017
).
19.
H.
Kedia
,
D.
Foster
,
M. R.
Dennis
, and
W. T. M.
Irvine
, “
Weaving knotted vector fields with tunable helicity
,”
Phys. Rev. Lett.
117
,
274501
(
2016
).
20.
A.
Chern
,
F.
Knöppel
,
U.
Pinkall
,
P.
Schröder
, and
S.
Weißmann
, “
Schrödinger’s smoke
,”
ACM Trans. Graphics
35
,
77
(
2016
).
21.
A.
Clebsch
, “
Ueber die Integration der hydrodynamischen Gleichungen
,”
J. Reine Angew. Math.
56
,
1
10
(
1859
).
22.
R. M.
Kerr
, “
Swirling, turbulent vortex rings formed from a chain reaction of reconnection events
,”
Phys. Fluids
25
,
065101
(
2013
).
23.
D.
Kleckner
,
L. H.
Kauffman
, and
W. T. M.
Irvine
, “
How superfluid vortex knots untie
,”
Nat. Phys.
12
,
650
655
(
2016
).
24.
S.
Kida
and
M.
Takaoka
, “
Vortex reconnection
,”
Annu. Rev. Fluid. Mech.
26
,
169
189
(
1994
).
25.
L. D. G.
Beardsell
and
G.
Dumas
, “
Investigation of the viscous reconnection phenomenon of two vortex tubes through spectral simulations
,”
Phys. Fluids
28
,
095103
(
2016
).
26.
S.
Leibovich
, “
The structure of vortex breakdown
,”
Ann. Rev. Fluid Mech.
10
,
221
246
(
1978
).
27.
Y.
Yang
and
D. I.
Pullin
, “
On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions
,”
J. Fluid Mech.
661
,
446
481
(
2010
).
28.
G.
Bateman
,
MHD Instabilities
(
MIT Press
,
1978
).
29.
X.
Liu
and
R. L.
Ricca
, “
Knots cascade detected by a monotonically decreasing sequence of values
,”
Sci. Rep.
6
,
24118
(
2016
).
30.
K.
Murasugi
, “
On the braid index of alternating links
,”
Trans. Am. Math. Soc.
326
,
237
260
(
1991
).
31.
Y.
Yang
and
D. I.
Pullin
, “
Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows
,”
J. Fluid Mech.
685
,
146
164
(
2011
).
32.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
1967
; 1973).
33.
J. Z.
Wu
,
H. Y.
Ma
, and
M. D.
Zhou
,
Vortical Flows
(
Springer
,
2015
).
34.
R. S.
Rogallo
, “
Numerical experiments in homogeneous turbulence
,” Technical Report No. TM81315,
NASA
,
1981
.
35.
Y.
Yang
,
D. I.
Pullin
, and
I.
Bermejo-Moreno
, “
Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence
,”
J. Fluid Mech.
654
,
233
270
(
2010
).
36.
T.
Zheng
,
J.
You
, and
Y.
Yang
, “
Principal curvatures and area ratio of propagating surfaces in isotropic turbulence
,”
Phys. Rev. Fluids
2
,
103201
(
2017
).
37.
H.
Guan
,
Z.
Wei
,
E. R.
Rasolkova
, and
C.
Wu
, “
Numerical simulations of two coaxial vortex rings head-on collision
,”
Adv. Appl. Math. Mech.
8
,
616
647
(
2016
).
38.
M.
Cheng
,
J.
Lou
, and
T. T.
Lim
, “
Numerical simulation of head-on collision of two coaxial vortex rings
,”
Fluid Dyn. Res.
50
,
065513
(
2018
).
39.
S. B.
Pope
,
Turbulent Flows
, 1st ed. (
Cambridge University Press
,
2000
).
40.
F.
Hussain
and
K.
Duraisamy
, “
Mechanics of viscous vortex reconnection
,”
Phys. Fluids
23
,
021701
(
2011
).
41.
K.
Shariff
and
A.
Leonard
, “
Vortex rings
,”
Annu. Rev. Fluid. Mech.
24
,
235
279
(
1992
).
42.
W. M.
van Rees
,
F.
Hussain
, and
P.
Koumoutsakos
, “
Vortex tube reconnection at Re = 104
,”
Phys. Fluids
24
,
075105
(
2012
).
43.
H. K.
Moffatt
, “
Helicity and singular structures in fluid dynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
3663
3670
(
2014
).
44.
C. E.
Laing
,
R. L.
Ricca
, and
D. W. L.
Sumners
, “
Conservation of writhe helicity under anti-parallel reconnection
,”
Sci. Rep.
5
,
9224
(
2015
).
You do not currently have access to this content.