This study proposes a new formulation for the Harten, Lax, and van Leer (HLL) type Riemann solver which is capable of solving contact discontinuities accurately but with robustness for strong shock. It is well known that the original HLL, which has incomplete wave structures, is too dissipative to capture contact discontinuities accurately. On the other side, contact-capturing approximate Riemann solvers such as HLL with Contact (HLLC) usually suffer from spurious solutions, also called carbuncle phenomenon, for strong shock. In this work, a new accurate and robust HLL-type formulation, the so-called HLL-BVD (HLL Riemann solver with boundary variation diminishing) is proposed by modifying the original HLL with the BVD algorithm. Instead of explicitly recovering the complete wave structures like the way of HLLC, the proposed method restores the missing contact with a jump-like function. The capability of solving contact discontinuities is further improved by minimizing the inherent dissipation term in HLL. Without modifying the original incomplete wave structures of HLL, the robustness for strong shock has been reserved. Thus, the proposed method is free from the shock instability problem. The accuracy and robustness of the new method are demonstrated through solving several one- and two-dimensional tests. Results indicate that the new formulation based on the two-wave HLL-type Riemann solver is not only capable of capturing contact waves more accurately than the original HLL or HLLC but, most importantly, is free form carbuncle instability for strong shock.

1.
S. K.
Godunov
, “
A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics
,”
Mat. Sb.
89
(
3
),
271
306
(
1959
).
2.
R. J.
LeVeque
,
Finite Volume Methods for Hyperbolic Problems
(
Cambridge University Press
,
2002
), Vol. 31.
3.
J. L.
Steger
and
R.
Warming
, “
Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods
,”
J. Comput. Phys.
40
(
2
),
263
293
(
1981
).
4.
B.
van Leer
, “
Flux-vector splitting for the Euler equation
,” in
Upwind and High-Resolution Schemes
(
Springer
,
1997
), pp.
80
89
.
5.
P. L.
Roe
, “
Approximate Riemann solvers, parameter vectors, and difference schemes
,”
J. Comput. Phys.
43
(
2
),
357
372
(
1981
).
6.
S.
Osher
and
F.
Solomon
, “
Upwind difference schemes for hyperbolic systems of conservation laws
,”
Math. Comput.
38
(
158
),
339
374
(
1982
).
7.
A.
Harten
,
P. D.
Lax
, and
B. v.
Leer
, “
On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
,”
SIAM Rev.
25
(
1
),
35
61
(
1983
).
8.
B.
Einfeldt
, “
On Godunov-type methods for gas dynamics
,”
SIAM J. Numer. Anal.
25
(
2
),
294
318
(
1988
).
9.
V. V.
Rusanov
,
Calculation of Interaction of Non-Steady Shock Waves with Obstacles
(
NRC, Division of Mechanical Engineering
,
1962
).
10.
S. D.
Kim
,
B. J.
Lee
,
H. J.
Lee
, and
I.-S.
Jeung
, “
Robust HLLC Riemann solver with weighted average flux scheme for strong shock
,”
J. Comput. Phys.
228
(
20
),
7634
7642
(
2009
).
11.
E. F.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction
(
Springer Science & Business Media
,
2013
).
12.
B.
Einfeldt
,
C.-D.
Munz
,
P. L.
Roe
, and
B.
Sjögreen
, “
On Godunov-type methods near low densities
,”
J. Comput. Phys.
92
(
2
),
273
295
(
1991
).
13.
J. J.
Quirk
, “
A contribution to the great Riemann solver debate
,” in
Upwind and High-Resolution Schemes
(
Springer
,
1997
), pp.
550
569
.
14.
K.
Huang
,
H.
Wu
,
H.
Yu
, and
D.
Yan
, “
Cures for numerical shock instability in HLLC solver
,”
Int. J. Numer. Methods Fluids
65
(
9
),
1026
1038
(
2011
).
15.
H.
Wu
,
L.
Shen
, and
Z.
Shen
, “
A hybrid numerical method to cure numerical shock instability
,”
Commun. Comput. Phys.
8
,
1264
1271
(
2010
).
16.
H.
Nishikawa
and
K.
Kitamura
, “
Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers
,”
J. Comput. Phys.
227
(
4
),
2560
2581
(
2008
).
17.
Z.
Shen
,
W.
Yan
, and
G.
Yuan
, “
A robust HLLC-type Riemann solver for strong shock
,”
J. Comput. Phys.
309
,
185
206
(
2016
).
18.
J.
Mandal
and
V.
Panwar
, “
Robust HLL-type Riemann solver capable of resolving contact discontinuity
,”
Comput. Fluids
63
,
148
164
(
2012
).
19.
A. V.
Rodionov
, “
Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon
,”
J. Comput. Phys.
345
,
308
329
(
2017
).
20.
S.
Chen
,
C.
Yan
,
B.
Lin
,
L.
Liu
, and
J.
Yu
, “
Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon
,”
J. Comput. Phys.
373
,
662
672
(
2018
).
21.
S.
Chen
,
C.
Yan
,
B.
Lin
, and
Y.
Li
, “
A new robust carbuncle-free roe scheme for strong shock
,”
J. Sci. Comput.
77
(
2
),
1250
1277
(
2018
).
22.
Z.
Chen
,
X.
Huang
,
Y.
Ren
, and
M.
Zhou
, “
General procedure for Riemann solver to eliminate carbuncle and shock instability
,”
AIAA J.
55
(
6
),
2002
2015
(
2017
).
23.
S.
Simon
and
J.
Mandal
, “
A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control
,”
Comput. Fluids
174
,
144
166
(
2018
).
24.
S.
Simon
and
J.
Mandal
, “
A simple cure for numerical shock instability in the HLLC Riemann solver
,”
J. Comput. Phys.
378
,
477
496
(
2019
).
25.
Z.
Jiang
,
C.
Yan
,
J.
Yu
, and
B.
Gao
, “
Effective technique to improve shock anomalies and heating prediction for hypersonic flows
,”
AIAA J.
55
,
1475
1479
(
2017
).
26.
Z.
Sun
,
S.
Inaba
, and
F.
Xiao
, “
Boundary variation diminishing (BVD) reconstruction: A new approach to improve Godunov schemes
,”
J. Comput. Phys.
322
,
309
325
(
2016
).
27.
F.
Xiao
,
S.
Ii
, and
C.
Chen
, “
Revisit to the THINC scheme: A simple algebraic VOF algorithm
,”
J. Comput. Phys.
230
(
19
),
7086
7092
(
2011
).
28.
F.
Xiao
,
Y.
Honma
, and
T.
Kono
, “
A simple algebraic interface capturing scheme using hyperbolic tangent function
,”
Int. J. Numer. Methods Fluids
48
(
9
),
1023
1040
(
2005
).
29.
S.
Davis
, “
Simplified second-order Godunov-type methods
,”
SIAM J. Sci. Stat. Comput.
9
(
3
),
445
473
(
1988
).
30.
D. S.
Balsara
, “
Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics
,”
J. Comput. Phys.
231
(
22
),
7504
7517
(
2012
).
31.
M.
Dumbser
and
D. S.
Balsara
, “
A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems
,”
J. Comput. Phys.
304
,
275
319
(
2016
).
32.
L.
Flandrin
and
P.
Charrier
, “
An improved approximate Riemann solver for hypersonic bidimensional flows
,” in
Fourteenth International Conference on Numerical Methods in Fluid Dynamics
(
Springer
,
1995
), pp.
251
258
.
33.
M.
Pandolfi
and
D.
D’Ambrosio
, “
Numerical instabilities in upwind methods: Analysis and cures for the ‘carbuncle’ phenomenon
,”
J. Comput. Phys.
166
(
2
),
271
301
(
2001
).
34.
X.
Deng
,
B.
Xie
,
R.
Loubère
,
Y.
Shimizu
, and
F.
Xiao
, “
Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts
,”
Comput. Fluids
171
,
1
14
(
2018
).
35.
X.
Deng
,
S.
Inaba
,
B.
Xie
,
K.-M.
Shyue
, and
F.
Xiao
, “
High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces
,”
J. Comput. Phys.
371
,
945
966
(
2018
).
36.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method
,”
J. Comput. Phys.
32
(
1
),
101
136
(
1979
).
37.
H.
Guillard
and
C.
Viozat
, “
On the behaviour of upwind schemes in the low mach number limit
,”
Comput. Fluids
28
(
1
),
63
86
(
1999
).
38.
B.
Thornber
,
D.
Drikakis
,
R. J.
Williams
, and
D.
Youngs
, “
On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes
,”
J. Comput. Phys.
227
(
10
),
4853
4872
(
2008
).
39.
F.
Rieper
, “
On the dissipation mechanism of upwind-schemes in the low mach number regime: A comparison between roe and HLL
,”
J. Comput. Phys.
229
(
2
),
221
232
(
2010
).
40.
G. A.
Sod
, “
A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
,”
J. Comput. Phys.
27
(
1
),
1
31
(
1978
).
41.
C.-W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
(
2
),
439
471
(
1988
).
42.
C. W.
Schulz-Rinne
, “
Classification of the Riemann problem for two-dimensional gas dynamics
,”
SIAM J. Math. Anal.
24
(
1
),
76
88
(
1993
).
43.
A.
Kurganov
and
E.
Tadmor
, “
Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers
,”
Numer. Methods Partial Differ. Equations
18
(
5
),
584
608
(
2002
).
44.
M.
Dumbser
,
O.
Zanotti
,
R.
Loubère
, and
S.
Diot
, “
A posteriori subcell limiting of the discontinuous galerkin finite element method for hyperbolic conservation laws
,”
J. Comput. Phys.
278
,
47
75
(
2014
).
45.
X.
Deng
,
B.
Xie
,
H.
Teng
, and
F.
Xiao
, “
High resolution multi-moment finite volume method for supersonic combustion on unstructured grids
,”
Appl. Math. Modell.
66
,
404
423
(
2019
).
46.
X.
Deng
,
B.
Xie
,
F.
Xiao
, and
H.
Teng
, “
New accurate and efficient method for stiff detonation capturing
,”
AIAA J.
56
(
10
),
4024
4038
(
2018
).
47.
P.
Yang
,
H. D.
Ng
,
H.
Teng
, and
Z.
Jiang
, “
Initiation structure of oblique detonation waves behind conical shocks
,”
Phys. Fluids
29
(
8
),
086104
(
2017
).
48.
Y.
Zhang
,
L.
Zhou
,
J.
Gong
,
H. D.
Ng
, and
H.
Teng
, “
Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model
,”
Phys. Fluids
30
(
10
),
106110
(
2018
).
49.
L. I.
Sedov
,
Similarity and Dimensional Methods in Mechanics
(
CRC Press
,
1993
).
50.
J.
Peng
,
X.
Deng
, and
F.
Xiao
, “
A direct ale multi-moment finite volume scheme for the compressible Euler equations
,”
Commun. Comput. Phys.
24
,
1300
1325
(
2018
).
51.
S.
Prasanna Kumar
,
B.
Patnaik
, and
G.
Liu
, “
A skewed kernel approach for the simulation of shocks using SPH
,”
Int. J. Numer. Methods Eng.
111
(
4
),
383
400
(
2017
).
52.
P.
Woodward
and
P.
Colella
, “
The numerical simulation of two-dimensional fluid flow with strong shocks
,”
J. Comput. Phys.
54
(
1
),
115
173
(
1984
).
53.
Z.
Xu
and
C.-W.
Shu
, “
Anti-diffusive flux corrections for high order finite difference weno schemes
,”
J. Comput. Phys.
205
(
2
),
458
485
(
2005
).
54.
S.
Prasanna Kumar
and
B.
Patnaik
, “
A multimass correction for multicomponent fluid flow simulation using smoothed particle hydrodynamics
,”
Int. J. Numer. Methods Eng.
113
(
13
),
1929
1949
(
2018
).
You do not currently have access to this content.