In this work, direct numerical simulations of the compressible fluid equations in turbulent regimes are performed. The behavior of the flow is either dominated by purely turbulent phenomena or by the generation of sound waves in it. Previous studies suggest that three different types of turbulence may happen at the low Mach number limit in polytropic flows: Nearly incompressible, modally equipartitioned compressible, and compressible wave. The distinction between these types of turbulence is investigated here applying different kinds of forcing. Scaling of density fluctuations with Mach number, comparison of the ratio of transverse velocity fluctuations to longitudinal fluctuations, and spectral decomposition of fluctuations are used to distinguish the nature of these solutions. From the study of the spatio-temporal spectra and correlation times, we quantify the contribution of the waves to the total energy of the system. Also, in the dynamics of a compressible flow, three associated correlation times are considered: the non-linear time of local interaction between scales, the sweeping time or non-local time of large scales on small scales, and the time associated with acoustic waves (sound). We observed that different correlation times dominate depending on the wave number (k), the Mach number, and the type of forcing.

1.
G. K.
Batchelor
,
Theory of Homogeneous Turbulence
(
Cambridge University Press
,
1970
).
2.
R. H.
Kraichnan
and
D.
Montgomery
, “
Two-dimensional turbulence
,”
Rep. Prog. Phys.
43
(
5
),
547
(
1980
).
3.
A. S.
Monin
and
A. M.
Yaglo
,
Statistical Fluid Mechanics: Mechanics of Turbulence
(
MIT Press
,
Cambridge
,
1971
), p.
2
.
4.
J. R.
Herring
and
J. C.
McWilliams
,
Lecture Noteson Turbulence
(
World Scientific
,
Teaneck, NJ
,
1989
).
5.
M. J.
Lighthill
, “
On sound generated aerodynamically I. General theory
,”
Proc. R. Soc. A
211
(
1107
),
564
587
(
1952
).
6.
I.
Proudman
, “
The generation of noise by isotropic turbulence
,”
Proc. R. Soc. A
214
(
1116
),
119
132
(
1952
).
7.
R.
Rubinstein
and
Y.
Zhou
, “
The frequency spectrum of sound radiated by isotropic turbulence
,”
Phys. Lett. A
267
(
5-6
),
379
383
(
2000
).
8.
J.-N.
Hau
and
B.
Müller
, “
Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations
,”
Phys. Fluids
30
,
016105
(
2018
).
9.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1959
).
10.
W. H.
Matthaeus
and
M. R.
Brown
, “
Nearly incompressible magnetohydrodynamics at low Mach number
,”
Phys. Fluids
31
(
12
),
3634
3644
(
1988
).
11.
G. P.
Zank
and
W. H.
Matthaeus
, “
The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves
,”
Phys. Fluids A
3
(
1
),
69
82
(
1991
).
12.
S.
Klainerman
and
A.
Majda
, “
Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids
,”
Commun. Pure Appl. Math.
34
(
4
),
481
524
(
1981
).
13.
S.
Klainerman
and
A.
Majda
, “
Compressible and incompressible fluids
,”
Commun. Pure Appl. Math.
35
(
5
),
629
651
(
1982
).
14.
A.
Majda
,
Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables
(
Springer-Verlag
,
New York
,
1984
).
15.
H.-O.
Kreiss
, “
Problems with different time scales for partial differential equations
,”
Commun. Pure Appl. Math.
33
(
3
),
399
439
(
1980
).
16.
S.
Ghosh
and
W. H.
Matthaeus
, “
Relaxation processes in a turbulent compressible magnetofluid
,”
Phys. Fluids B
2
(
7
),
1520
1534
(
1990
).
17.
T.
Passot
and
A.
Pouquet
, “
Numerical simulation of compressible homogeneous flows in the turbulent regime
,”
J. Fluid Mech.
181
,
441
466
(
1987
).
18.
J. V.
Shebalin
and
D.
Montgomery
, “
Turbulent magnetohydrodynamic density fluctuations
,”
J. Plasma Phys.
39
(
2
),
339
367
(
1988
).
19.
R. B.
Dahlburg
,
J. P.
Dahlburg
, and
J. T.
Mariska
, “
Helical magnetohydrodynamic turbulence and the coronal heating problem
,”
Astron. Astrophys.
198
,
300
310
(
1988
).
20.
R. B.
Dahlburg
,
J. M.
Picone
, and
J. T.
Karpen
, “
Growth of correlation in compressible two-dimensional magnetofluid turbulence
,”
J. Geophys. Res.: Space Phys.
93
(
A4
),
2527
2532
, https://doi.org/10.1029/ja093ia04p02527 (
1988
).
21.
R. B.
Dahlburg
and
J. M.
Picone
, “
Evolution of the Orszag–Tang vortex system in a compressible medium. I. Initial average subsonic flow
,”
Phys. Fluids B
1
(
11
),
2153
2171
(
1989
).
22.
M.
Scholer
,
T.
Terasawa
, and
F.
Jamitzky
, “
Reconnection and fluctuations in compressible MHD: A comparison of different numerical methods
,”
Comput. Phys. Commun.
59
(
1
),
175
184
(
1990
).
23.
R. H.
Kraichnan
, “
On the statistical mechanics of an adiabatically compressible fluid
,”
J. Acoust. Soc. Am.
27
(
3
),
438
441
(
may 1955
).
24.
S.
Ghosh
and
W. H.
Matthaeus
, “
Low Mach number two-dimensional hydrodynamic turbulence: Energy budgets and density fluctuations in a polytropic fluid
,”
Phys. Fluids A
4
(
1
),
148
164
(
1992
).
25.
S.
Chandrasekhar
,
An Introduction to the Study of Stellar Structure
(
Courier Corporation
,
1957
), Vol. 2.
26.
C.
Hirsch
,
Numerical Computation of Internal and External Flows
(
Elsevier
,
2007
).
27.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods in Fluid Dynamics
(
Springer-Verlag
,
1987
).
28.
S. P.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
29.
P.
Clark di Leoni
,
P. J.
Cobelli
,
P. D.
Mininni
,
P.
Dmitruk
, and
W. H.
Matthaeus
, “
Quantification of the strength of inertial waves in a rotating turbulent flow
,”
Phys. Fluids
26
,
035106
(
2014
).
30.
R.
Lugones
,
P.
Dmitruk
,
P. D.
Mininni
,
M.
Wan
, and
W. H.
Matthaeus
, “
On the spatio-temporal behavior of magnetohydrodynamic turbulence in a magnetized plasma
,”
Phys. Plasmas
23
(
11
),
112304
(
2016
).
31.
N.
Andrés
,
P.
Clark di Leoni
,
P. D.
Mininni
,
P.
Dmitruk
,
F.
Saharaoui
, and
W. H.
Matthaeus
, “
Interplay between Alfven and magnetosonic waves in compressible magnetohydrodynamics turbulence
,”
Phys. Plasmas
24
,
102314
(
2017
).
32.
S.
Ghosh
,
M.
Hossain
, and
W. H.
Matthaeus
, “
The application of spectral methods in simulating compressible fluid and magnetofluid turbulence
,”
Comput. Phys. Commun.
74
(
1
),
18
40
(
1993
).
33.
G. I.
Taylor
, “
Statistical theory of turbulence
,”
Proc. R. Soc. London, Ser. A
151
(
873
),
421
444
(
1935
).
34.
G. I.
Taylor
, “
The spectrum of turbulence
,”
Proc. R. Soc. London, Ser. A
164
,
476
490
(
1938
).
You do not currently have access to this content.