In this study, we investigate the effects of micro vortex generators (VGs) installed close to the leading edge of a quasi-two-dimensional NACA0015 hydrofoil under cavitating and non-cavitating conditions. Our aim is to improve physical insight into interaction mechanisms of the boundary layer with the formation and stability of partial cavities. Under non-cavitating conditions, the proposed micro VGs effectively suppress laminar separation. However, under cavitating conditions, even very small micro VGs within the boundary layer promote the formation of counter-rotating cavitating vortices. In comparison with the smooth hydrofoil surface (without micro VGs), the cavitation onset is shifted toward the leading edge. Additionally, classical “fingering structures” and Tollmien–Schlichting waves are no longer present. Since the onset of the cavity does no longer appear at (or close to) the laminar separation line, a novel onset mechanism is observed experimentally. The mechanism consists of stable vortex cavitation, followed by vortex break-down into bubbly structures that are finally accumulated into an attached cavity region. By reduction in the height of the micro VGs, a delayed vortex break-down is found, leading to an increase in the length of the cavitating vortex pattern. This allows for enhanced control on the cavity dynamics, especially with respect to the penetration depth of the re-entrant jet. As a result of our investigation, we conclude that well suited micro VGs show a high potential to manipulate and control cavity dynamics.

1.
J.-P.
Franc
and
J.-M.
Michel
, “
Attached cavitation and the boundary layer: Experimental investigation and numerical treatment
,”
J. Fluid Mech.
154
,
63
90
(
1985
).
2.
M.
Kjeldsen
,
R. E.
Arndt
, and
M.
Effertz
, “
Spectral characteristics of sheet/cloud cavitation
,”
J. Fluids Eng.
122
,
481
487
(
2000
).
3.
J.-P.
Franc
and
J.-M.
Michel
,
Fundamentals of Cavitation
(
Springer Netherlands
,
Netherlands
,
2006
).
4.
M.
Adama Maiga
,
O.
Coutier-Delgosha
, and
D.
Buisine
, “
A new cavitation model based on bubble-bubble interactions
,”
Phys. Fluids
30
,
123301
(
2018
).
5.
Y.
Kannan
,
B.
Karri
, and
K. C.
Sahu
, “
Entrapment and interaction of an air bubble with an oscillating cavitation bubble
,”
Phys. Fluids
30
,
041701
(
2018
).
6.
L.
Chen
,
L.
Zhang
,
X.
Peng
, and
X.
Shao
, “
Influence of water quality on the tip vortex cavitation inception
,”
Phys. Fluids
31
,
023303
(
2019
).
7.
E.-J.
Foeth
,
T.
van Terwisga
, and
C.
van Doorne
, “
On the collapse structure of an attached cavity on a three-dimensional hydrofoil
,”
J. Fluids Eng.
130
,
071303
(
2008
).
8.
O.
Coutier-Delgosha
,
J.-F.
Devillers
,
T.
Pichon
,
A.
Vabre
,
R.
Woo
, and
S.
Legoupil
, “
Internal structure and dynamics of sheet cavitation
,”
Phys. Fluids
18
,
017103
(
2006
).
9.
O.
Coutier-Delgosha
,
B.
Stutz
,
A.
Vabre
, and
S.
Legoupil
, “
Analysis of cavitating flow structure by experimental and numerical investigations
,”
J. Fluid Mech.
578
,
171
222
(
2007
).
10.
A.
Kubota
,
H.
Kato
,
H.
Yamaguchi
, and
M.
Maeda
, “
Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique
,”
J. Fluids Eng.
111
,
204
210
(
1989
).
11.
R. E.
Arndt
, “
Cavitation in fluid machinery and hydraulic structures
,”
Annu. Rev. Fluid Mech.
13
,
273
326
(
1981
).
12.
L. A.
Teran
,
S. A.
Rodriguez
,
S.
Laín
, and
S.
Jung
, “
Interaction of particles with a cavitation bubble near a solid wall
,”
Phys. Fluids
30
,
123304
(
2018
).
13.
V. H.
Arakeri
, “
Viscous effects on the position of cavitation separation from smooth bodies
,”
J. Fluid Mech.
68
,
779
799
(
1975
).
14.
A. T.
Leger
and
S. L.
Ceccio
, “
Examination of the flow near the leading edge of attached cavitation. Part 1. Detachment of two-dimensional and axisymmetric cavities
,”
J. Fluid Mech.
376
,
61
90
(
1998
).
15.
V.
Arakeri
and
A.
Acosta
, “
Viscous effects in the inception of cavitation on axisymmetric bodies
,”
J. Fluids Eng.
95
,
519
527
(
1973
).
16.
A. T.
Leger
,
L. P.
Bernal
, and
S. L.
Ceccio
, “
Examination of the flow near the leading edge of attached cavitation. Part 2. Incipient breakdown of two-dimensional and axisymmetric cavities
,”
J. Fluid Mech.
376
,
91
113
(
1998
).
17.
E.
Rood
, “
Review—Mechanisms of cavitation inception
,”
J. Fluids Eng.
113
,
163
175
(
1991
).
18.
M.
van Rijsbergen
, “
A review of sheet cavitation inception mechanisms
,” in
ISROMAC2016-International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Hawaii, Honolulu, USA
,
2016
.
19.
E.
Amromin
, “
Approximate analysis of hydrofoil material impact on cavitation inception
,” in
ISROMAC 2016-16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Hawaii, Honolulu, USA
,
2016
.
20.
T. T.
Huang
, “
The effects of turbulence stimulators on cavitation inception of axisymmetric headforms
,”
J. Fluids Eng.
108
,
261
268
(
1986
).
21.
P.
Ausoni
,
A.
Zobeiri
,
F.
Avellan
, and
M.
Farhat
, “
The effects of a tripped turbulent boundary layer on vortex shedding from a blunt trailing edge hydrofoil
,”
J. Fluids Eng.
134
,
051207
051211
(
2012
).
22.
S. A.
Churkin
,
K. S.
Pervunin
,
A. Y.
Kravtsova
,
D. M.
Markovich
, and
K.
Hanjalić
, “
Cavitation on NACA0015 hydrofoils with different wall roughness: High-speed visualization of the surface texture effects
,”
J. Visualization
19
,
587
590
(
2016
).
23.
O.
Coutier-Delgosha
,
J.-F.
Devillers
,
M.
Leriche
, and
T.
Pichon
, “
Effect of wall roughness on the dynamics of unsteady cavitation
,”
J. Fluids Eng.
127
,
726
733
(
2005
).
24.
B.
Stutz
, “
Influence of roughness on the two-phase flow structure of sheet cavitation
,”
J. Fluids Eng.
125
,
652
659
(
2003
).
25.
M.
Farhat
,
F. A.
Gennoun
, and
F. o.
Avellan
, “
The leading edge cavitation dynamics
,” in
ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
,
Montreal, Quebec, Canada
,
2002
.
26.
E.
Ezzatneshan
, “
Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method
,”
Phys. Fluids
29
,
113304
(
2017
).
27.
R.
Eppler
and
Y.
Shen
, “
Wing sections for hydrofoils—Part 2. Non-symmetrical profiles
,”
J. Ship Res.
25
,
191
200
(
1981
).
28.
Y. T.
Shen
, “
Wing sections for hydrofoils—Part 3: Experimental verifications
,”
J. Ship Res.
29
,
39
50
(
1985
).
29.
A.
Goto
and
M.
Zangeneh
, “
Hydrodynamic design of pump diffuser using inverse design method and CFD
,”
J. Fluids Eng.
124
,
319
328
(
2002
).
30.
M.
Zangeneh
, “
A compressible three-dimensional design method for radial and mixed flow turbomachinery blades
,”
Int. J. Numer. Methods Fluids
13
,
599
624
(
1991
).
31.
B.
Zhu
and
H.
Chen
, “
Analysis of the staggered and fixed cavitation phenomenon observed in centrifugal pumps employing a gap drainage impeller
,”
J. Fluids Eng.
139
,
031301
(
2017
).
32.
H.
Kato
,
H.
Yamaguchi
,
S.
Okada
,
K.
Kikuchi
, and
M.
Miyanaga
, “
Suppression of sheet cavitation inception by water discharge through slit
,”
J. Fluids Eng.
109
,
70
74
(
1987
).
33.
W.
Wang
,
Q.
Yi
,
S.
Lu
, and
X.
Wang
, “
Exploration and research of the impact of hydrofoil surface water injection on cavitation suppression
,” in
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, North Carolina, USA
,
2017
.
34.
W.
Shi
,
M.
Atlar
,
R.
Rosli
,
B.
Aktas
, and
R.
Norman
, “
Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs
,”
Ocean Eng.
121
,
143
155
(
2016
).
35.
K.
Onishi
,
K.
Matsuda
, and
K.
Miyagawa
, “
Influence of hydrophilic and hydrophobic coating on hydrofoil performance
,” in
ISROMAC 2017-International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Hawaii, Maui, USA
,
2017
.
36.
H.
An
, “
On the use of vortex generators to control cavitation in a backward facing step flow
,” Ph.D. thesis,
Purdue University
,
West Lafayette, State of Indiana, USA
,
2007
.
37.
F.
Lu
,
H.
Huang
,
Z.
Zhang
,
E.
Ding
, and
L.
Ying
, “
Application of the vortex generator to control the PHV cavitation
,”
J. Ship Mech.
6
,
007
(
2009
).
38.
B.
Che
and
D.
Wu
, “
Study on vortex generators for control of attached cavitation
,” in
ASME 2017 Fluids Engineering Division Summer Meeting
,
Hawaii, USA
,
2017
.
39.
M.
Gad-el-Hak
, “
Modern developments in flow control
,”
Appl. Mech. Rev.
49
,
365
380
(
1996
).
40.
J. C.
Lin
, “
Review of research on low-profile vortex generators to control boundary-layer separation
,”
Prog. Aerosp. Sci.
38
,
389
420
(
2002
).
41.
J.
Katz
and
T. J.
O’Hern
, “
Cavitation in large scale shear flows
,”
J. Fluids Eng.
108
,
373
376
(
1986
).
42.
B.
Che
,
L.
Cao
,
N.
Chu
,
D.
Likhachev
, and
D.
Wu
, “
Dynamic behaviors of re-entrant jet and cavity shedding during transitional cavity oscillation on NACA0015 hydrofoil
,”
J. Fluids Eng.
141
,
061101
(
2018
).
43.
G.
Godard
and
M.
Stanislas
, “
Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators
,”
Aerosp. Sci. Technol.
10
,
181
191
(
2006
).
44.
F. R.
Menter
,
R. B.
Langtry
,
S. R.
Likki
,
Y. B.
Suzen
,
P. G.
Huang
, and
S.
Völker
, “
A correlation-based transition model using local variables—Part I: Model formulation
,”
J. Turbomach.
128
,
413
422
(
2006
).
45.
R. B.
Langtry
,
F. R.
Menter
,
S. R.
Likki
,
Y. B.
Suzen
,
P. G.
Huang
, and
S.
Völker
, “
A correlation-based transition model using local variables—Part II: Test cases and industrial applications
,”
J. Turbomach.
128
,
423
434
(
2006
).
46.
R. B.
Langtry
and
F. R.
Menter
, “
Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes
,”
AIAA J.
47
,
2894
2906
(
2009
).
47.
P. L.
Delafin
,
F.
Deniset
, and
J. A.
Astolfi
, “
Effect of the laminar separation bubble induced transition on the hydrodynamic performance of a hydrofoil
,”
Eur. J. Mech. B: Fluids
46
,
190
200
(
2014
).
48.
C.-Y.
Li
and
S. L.
Ceccio
, “
Interaction of single travelling bubbles with the boundary layer and attached cavitation
,”
J. Fluid Mech.
322
,
329
353
(
1996
).
49.
B.
Che
,
D.
Likhachev
,
L.
Cao
,
N.
Qiu
,
N.
Chu
, and
D.
Wu
, “
Research on the effect of vortex generators on controlling flow separation of hydrofoil
,”
J. Eng. Thermophys.
39
,
92
97
(
2018
).
50.
C.
Brennen
, “
Cavity surface wave patterns and general appearance
,”
J. Fluid Mech.
44
,
33
49
(
1970
).
51.
S.
Gopalan
and
J.
Katz
, “
Flow structure and modeling issues in the closure region of attached cavitation
,”
Phys. Fluids
12
,
895
911
(
2000
).
You do not currently have access to this content.