The planar oblique impact of a homogeneous sphere on an infinitely massive rough plane is described assuming that normal and tangential restitution mechanisms operate independently of friction, and that frictional effects include not only the usual Coulomb model but also rolling friction effects. This formulation extends early models including rolling friction effects in the description of impact events to include the independent friction restitution closure. The model yields velocity-independent equations for postimpact linear and angular velocities in four impact regimes, namely, sliding plus rolling, sliding nonrolling, stick plus rolling, and stick nonrolling whose predictions are compared with experimental data from the literature.
REFERENCES
1.
S.
Luding
, “Cohesive, frictional powders: Contact models for tension
,” Granular Matter
10
, 235
(2008
).2.
P.
Müller
and T.
Pöschel
, “Oblique impact of frictionless spheres: On the limitations of hard sphere models for granular dynamics
,” Granular Matter
14
, 115
(2012
).3.
D.
Vescovi
, D.
Berzi
, P.
Richard
, and N.
Brodu
, “Plane shear flows of frictionless spheres: Kinetic theory and 3D soft-sphere discrete element method simulations
,” Phys. Fluids
26
, 053305
(2014
).4.
S.
Yang
, L.
Zhang
, K.
Luo
, and J. W.
Chew
, “DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum
,” Phys. Fluids
29
, 123301
(2017
).5.
M. A.
Hopkins
and M. Y.
Louge
, “Inelastic microstructure in rapid granular flows of smooth disks
,” Phys. Fluids
3
, 47
(1991
).6.
S. F.
Foerster
, M. Y.
Louge
, H.
Chang
, and K.
Allia
, “Measurements of the collision properties of small spheres
,” Phys. Fluids
6
, 1108
(1994
).7.
A.
Le Quiniou
, F.
Rioual
, P.
Héritier
, and Y.
Lapusta
, “Experimental study of the bouncing trajectory of a particle along a rotating wall
,” Phys. Fluids
21
, 123302
(2009
).8.
R.
Zhao
, Q.
Zhang
, H.
Tjugito
, and X.
Cheng
, “Raindrop impact on a sandy surface
,” Phys. Fluids
27
, 091111
(2015
).9.
S.
Chen
and V.
Bertola
, “Drop impact on spherical soft surfaces
,” Phys. Fluids
29
, 082106
(2017
).10.
S. A.
Banitabaei
and A.
Amirfazli
, “Droplet impact onto a solid sphere: Effect of wettability and impact velocity
,” Phys. Fluids
29
, 062111
(2017
).11.
N.
Chen
, H.
Chen
, and A.
Amirfazli
, “Drop impact onto a thin film: Miscibility effect
,” Phys. Fluids
29
, 092106
(2017
).12.
13.
W.
Stronge
, Impact Mechanics
(Cambridge University Press
, New York
, 2000
).14.
N.
Maw
, J. R.
Barber
, and J. N.
Fawcett
, “The rebound of elastic bodies in oblique impact
,” Mech. Res. Commun.
4
, 17
(1977
).15.
N.
Maw
, J. R.
Barber
, and J. N.
Fawcett
, “The role of elastic tangential compliance in oblique impact
,” J. Lubr. Tech.
103
, 74
(1981
).16.
R. M.
Brach
, “Friction, restitution, and energy loss in planar collisions
,” J. Appl. Mech.
51
, 164
(1984
).17.
T. R.
Kane
and D. A.
Levinson
, “An explicit solution of the general two-body collision problem
,” Comput. Mech.
2
, 75
(1987
).18.
W. J.
Stronge
, “Smooth dynamics of oblique impact with friction
,” Int. J. Impact Eng.
51
, 36
(2013
).19.
G. G.
Joseph
and M. L.
Hunt
, “Oblique particle-wall collisions in a liquid
,” J. Fluid Mech.
510
, 71
(2004
).20.
C. Y.
Wu
, C.
Thornton
, and L.-Y.
Li
, “A semi-analytical model for oblique impact of elastoplastic spheres
,” Proc. R. Soc. A
465
, 937
(2008
).21.
J.
Calsamiglia
, S. W.
Kennedy
, A.
Chatterjee
, A. L.
Ruina
, and J. T.
Jenlins
, “Anomalous frictional behavior in collisions of thin disks
,” J. Appl. Mech.
66
, 146
(1999
).22.
K.
Iwashita
and M.
Oda
, “Rolling resistance at contacts in simulation of shear band development by DEM
,” J. Eng. Mech.
124
, 285
(1998
).23.
A. D.
Orlando
and H. H.
Shen
, “Effect of rolling friction on binary collision of spheres
,” Phys. Fluids
22
, 033304
(2010
).24.
A.
Doménech-Carbó
, “Analysis of oblique rebound using a redefinition of the coefficient of tangential restitution coefficient
,” Mech. Res. Commun.
54
, 35
(2013
).25.
A.
Doménech-Carbó
, “On the tangential restitution problem: Independent friction-restitution modelling
,” Granular Matter
16
, 573
(2014
);A.
Doménech-Carbó
Erratum, Granul. Matter
16
, 945
(2014
).26.
A.
Doménech-Carbó
, “On the independence of friction and restitution: An operational approach
,” Granular Matter
18
, 9
(2016
).27.
R. M.
Brach
, “Formulation of rigid body impact problems using generalized coefficients
,” Int. J. Eng. Sci.
36
, 61
(1998
).28.
O. R.
Walton
, “Numerical simulation of inelastic, frictional particle-particle interactions
,” in Particulate Two-Phase Flow
, edited by M. C.
Rocco
(Butterwort-Heinemann
, Stonehem
, 1993
), pp. 884
–911
.29.
A.
Lorenz
, C.
Tuozzolo
, and M. Y.
Louge
, “Measurement of impact properties of small, nearly spherical particles
,” Exp. Mech.
37
, 292
(1997
).30.
D. A.
Gorham
and A. H.
Kharaz
, “The measurement of particle rebound characteristics
,” Powder Technol.
112
, 193
(2000
).31.
A. H.
Kharaz
, D. A.
Gorham
, and A. D.
Salman
, “An experimental study of the elastic rebound of spheres
,” Powder Technol.
120
, 281
(2001
).32.
H.
Dong
and M. H.
Moys
, “Experimental study of oblique impacts with initial spin
,” Powder Technol.
161
, 22
(2006
).33.
S.
Antonyuk
, S.
Heinrich
, J.
Tomas
, N. G.
Deen
, M. S.
van Buijtenen
, and J. A. M.
Kuipers
, “Nergy absorption during compression and impact of dry elastic-plastic spherical granules
,” Granular Matter
12
, 15
(2010
).34.
P.
Mueller
, S.
Antonyuk
, M.
Stasiak
, J.
Tomas
, and S.
Heinrich
, “The normal and oblique impact of three types of wet granules
,” Granular Matter
13
, 455
(2011
).35.
J.
Xie
, M.
Dong
, S.
Li
, Y.
Mei
, and Y.
Shang
, “An experimental study of fly ash particle oblique impact with stainless surfaces
,” J. Aerosol Sci.
123
, 27
(2018
).36.
R.
Mourya
and A.
Chatterjee
, “Anomalous frictional behavior in collisions of thin disks revisited
,” J. Appl. Mech.
75
, 024501
(2008
).37.
M. Y.
Louge
and M. E.
Adams
, “Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elasto-plastic plate
,” Phys. Rev. E
65
, 021303
(2002
).38.
O.
Reynolds
, “On rolling friction
,” Philos. Trans. R. Soc. London
166
, 155
(1876
).39.
H.
Hertz
, On the Contact of Rigid Elastic Solids and Hardness
(MacMillan
, London
, 1886
), Miscellaneous Papers.40.
A.
Doménech-Carbó
, M. T.
Doménech-Carbó
, and J. S.
Cebrián-Martínez
, “Introduction to the study of rolling friction
,” Am. J. Phys.
55
, 231
(1987
).41.
H. N.
Pishkenari
, H. K.
Rad
, and H. J.
Shad
, “Transformation of sliding motion to rolling during spheres collision
,” Granular Matter
19
, 70
(2017
).42.
C.
Zener
, “The intrinsic inelasticity of large plates
,” Phys. Rev.
59
, 669
(1941
).43.
J. P. A.
Tillett
, “A study of the impact of spheres on plates
,” Proc. Phys. Soc. B
67
, 677
(1954
).44.
S.
Schwager
, V.
Becker
, and T.
Pöschel
, “Coefficient of tangential restitution for viscoelastic spheres
,” Eur. Phys. J. E
27
, 107
(2008
).45.
C.
Thornton
and Z.
Ning
, “A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres
,” Powder Technol.
99
, 154
(1998
).46.
O.
Herbst
, M.
Huthmann
, and A.
Zippelius
, “Dynamics of inelastically colliding spheres with Coulomb friction: Relaxation of translational and rotational energy
,” Granular Matter
2
, 211
(2000
).47.
L.
Vu-Quoc
, X.
Zhang
, and L.
Lesburg
, “Contact force–displacement relations for spherical particles accounting for plastic deformation
,” Int. J. Solids Struct.
38
, 6455
(2001
).48.
L.
Vu-Quoc
and X.
Zhang
, “An elasto-plastic contact force-displacement model in the normal direction: Displacement-driven version
,” Proc. R. Soc. A
455
, 4013
(1999
).49.
X.
Zhang
and L.
Vu-Quoc
, “An accurate elasto-plastic frictional tangential force-displacement model for granular flow simulations: Displacement-driven formulation
,” J. Comput. Phys.
225
, 730
(2007
).50.
51.
X.
Zhang
and L.
Vu-Quoc
, “Modeling the dependence of the coefficient of restitution on the impact velocity of elasto-plastic collisions
,” Int. J. Impact Eng.
27
, 317
(2002
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.