Surface tension driven droplet transport in an open surface is increasingly becoming popular for various microfluidic applications. In this work, efficient transport of a glycerin droplet on an open wettability gradient surface with controlled wettability and confinement is numerically investigated. Nondimensional track width w* (ratio of the width of the wettability gradient track w and the initial droplet diameter d0) of a wettability gradient track laid on a superhydrophobic background represents wettability confinement. A lower value of w* represents higher wettability confinement. Droplet behavior changes for different wettability confinements and gradients of the track. It is found that droplet velocity is a function of the wettability confinement and the gradient; droplet transport velocity is maximum for w* = 0.8. Higher confinement (w* < 0.8) leads to a significant reduction in droplet velocity. Droplet transport characteristics on hydrophilic–superhydrophilic, hydrophobic–superhydrophilic, and superhydrophobic–superhydrophilic tracks are studied. It is found that for a fixed length of the track, droplet velocity is maximum for the superhydrophobic–superhydrophilic track. A droplet transport regime is demonstrated for a wettability gradient track with different confinements, and it is found that the droplet is transported for wettability confinement w* > 0.6 irrespective of the wettability gradient of the track. These findings provide valuable insight into efficient droplet manipulation in microfluidic devices.

1.
X.
Yao
,
Y.
Song
, and
L.
Jiang
, “
Applications of bio-inspired special wettable surfaces
,”
Adv. Mater.
23
(
6
),
719
734
(
2011
).
2.
J.
Li
and
Z.
Guo
, “
Spontaneous directional transportations of water droplets on surfaces driven by gradient structures
,”
Nanoscale
10
(
29
),
13814
13831
(
2018
).
3.
A.
Ghosh
,
R.
Ganguly
,
T. M.
Schutzius
, and
C. M.
Megaridis
, “
Wettability patterning for high-rate, pumpless fluid transport on open, non-planar microfluidic platforms
,”
Lab Chip
14
(
9
),
1538
1550
(
2014
).
4.
A. A.
Darhuber
,
J. P.
Valentino
,
S. M.
Troian
, and
S.
Wagner
, “
Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays
,”
J. Microelectromech. Syst.
12
(
6
),
873
879
(
2003
).
5.
S.
Mettu
and
M. K.
Chaudhury
, “
Motion of drops on a surface induced by thermal gradient and vibration
,”
Langmuir
24
(
19
),
10833
10837
(
2008
).
6.
M.
Foroutan
,
S. M.
Fatemi
,
F.
Esmaeilian
,
V.
Fadaei Naeini
, and
M.
Baniassadi
, “
Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient
,”
Phys. Fluids
30
(
5
),
052101
(
2018
).
7.
V.
Jaiswal
,
A.
Harikrishnan
,
G.
Khurana
, and
P.
Dhar
, “
Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets
,”
Phys. Fluids
30
(
1
),
012113
(
2018
).
8.
S. K.
Cho
,
H.
Moon
, and
C.-J.
Kim
, “
Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits
,”
J. Microelectromech. Syst.
12
(
1
),
70
80
(
2003
).
9.
L.
Latorre
,
J.
Kim
,
J.
Lee
,
P.-P.
De Guzman
,
H. J.
Lee
,
P.
Nouet
, and
C.-J.
Kim
, “
Electrostatic actuation of microscale liquid-metal droplets
,”
J. Microelectromech. Syst.
11
(
4
),
302
308
(
2002
).
10.
G.
Kunti
,
P. K.
Mondal
,
A.
Bhattacharya
, and
S.
Chakraborty
, “
Electrothermally modulated contact line dynamics of a binary fluid in a patterned fluidic environment
,”
Phys. Fluids
30
(
9
),
092005
(
2018
).
11.
G.
Kunti
,
A.
Bhattacharya
, and
S.
Chakraborty
, “
Electrothermally actuated moving contact line dynamics over chemically patterned surfaces with resistive heaters
,”
Phys. Fluids
30
(
6
),
062004
(
2018
).
12.
Z.
Long
,
A. M.
Shetty
,
M. J.
Solomon
, and
R. G.
Larson
, “
Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface
,”
Lab Chip
9
(
11
),
1567
1575
(
2009
).
13.
K.
Ichimura
,
S.-K.
Oh
, and
M.
Nakagawa
, “
Light-driven motion of liquids on a photoresponsive surface
,”
Science
288
(
5471
),
1624
1626
(
2000
).
14.
Y.
Zheng
,
J.
Cheng
,
C.
Zhou
,
H.
Xing
,
X.
Wen
,
P.
Pi
, and
S.
Xu
, “
Droplet motion on a shape gradient surface
,”
Langmuir
33
(
17
),
4172
4177
(
2017
).
15.
J. M.
Morrissette
,
P. S.
Mahapatra
,
A.
Ghosh
,
R.
Ganguly
, and
C. M.
Megaridis
, “
Rapid, self-driven liquid mixing on open-surface microfluidic platforms
,”
Sci. Rep.
7
(
1
),
1800
(
2017
).
16.
S.
Dhiman
,
K.
Jayaprakash
,
R.
Iqbal
, and
A. K.
Sen
, “
Self-transport and manipulation of aqueous droplets on oil-submerged diverging groove
,”
Langmuir
34
(
41
),
12359
12368
(
2018
).
17.
R. J.
Petrie
,
T.
Bailey
,
C. B.
Gorman
, and
J.
Genzer
, “
Fast directed motion of fakir droplets
,”
Langmuir
20
(
23
),
9893
9896
(
2004
).
18.
X.
Xu
and
T.
Qian
, “
Droplet motion in one-component fluids on solid substrates with wettability gradients
,”
Phys. Rev. E
85
(
5
),
051601
(
2012
).
19.
O.
Hegde
,
S.
Chakraborty
,
P.
Kabi
, and
S.
Basu
, “
Vapor mediated control of microscale flow in sessile droplets
,”
Phys. Fluids
30
(
12
),
122103
(
2018
).
20.
J.-T.
Yang
,
J. C.
Chen
,
K.-J.
Huang
, and
J. A.
Yeh
, “
Droplet manipulation on a hydrophobic textured surface with roughened patterns
,”
J. Microelectromech. Syst.
15
(
3
),
697
707
(
2006
).
21.
H. P.
Greenspan
, “
On the motion of a small viscous droplet that wets a surface
,”
J. Fluid Mech.
84
(
1
),
125
143
(
1978
).
22.
F.
Brochard
, “
Motions of droplets on solid surfaces induced by chemical or thermal gradients
,”
Langmuir
5
(
2
),
432
438
(
1989
).
23.
R. S.
Subramanian
,
N.
Moumen
, and
J. B.
McLaughlin
, “
Motion of a drop on a solid surface due to a wettability gradient
,”
Langmuir
21
(
25
),
11844
11849
(
2005
).
24.
M. K.
Chaudhury
and
G. M.
Whitesides
, “
How to make water run uphill
,”
Science
256
(
5063
),
1539
1541
(
1992
).
25.
N.
Moumen
,
R. S.
Subramanian
, and
J. B.
McLaughlin
, “
Experiments on the motion of drops on a horizontal solid surface due to a wettability gradient
,”
Langmuir
22
(
6
),
2682
2690
(
2006
).
26.
M. K.
Chaudhury
,
A.
Chakrabarti
, and
S.
Daniel
, “
Generation of motion of drops with interfacial contact
,”
Langmuir
31
(
34
),
9266
9281
(
2015
).
27.
O.
Bliznyuk
,
H. P.
Jansen
,
E. S.
Kooij
,
H. J.
Zandvliet
, and
B.
Poelsema
, “
Smart design of stripe-patterned gradient surfaces to control droplet motion
,”
Langmuir
27
(
17
),
11238
11245
(
2011
).
28.
Y.
Ito
,
M.
Heydari
,
A.
Hashimoto
,
T.
Konno
,
A.
Hirasawa
,
S.
Hori
,
K.
Kurita
, and
A.
Nakajima
, “
The movement of a water droplet on a gradient surface prepared by photodegradation
,”
Langmuir
23
(
4
),
1845
1850
(
2007
).
29.
C.
Liu
,
J.
Sun
,
J.
Li
,
C.
Xiang
,
L.
Che
,
Z.
Wang
, and
X.
Zhou
, “
Long-range spontaneous droplet self-propulsion on wettability gradient surfaces
,”
Sci. Rep.
7
(
1
),
7552
(
2017
).
30.
Q.
Liu
and
B.
Xu
, “
A unified mechanics model of wettability gradient-driven motion of water droplet on solid surfaces
,”
Extreme Mech. Lett.
9
,
304
309
(
2016
).
31.
K. A.
Raman
, “
Dynamics of simultaneously impinging drops on a dry surface: Role of inhomogeneous wettability and impact shape
,”
J. Colloid Interface Sci.
516
,
232
247
(
2018
).
32.
J.-J.
Huang
,
H.
Huang
, and
X.
Wang
, “
Numerical study of drop motion on a surface with stepwise wettability gradient and contact angle hysteresis
,”
Phys. Fluids
26
(
6
),
062101
(
2014
).
33.
M.
Ahmadlouydarab
and
J. J.
Feng
, “
Motion and coalescence of sessile drops driven by substrate wetting gradient and external flow
,”
J. Fluid Mech.
746
,
214
235
(
2014
).
34.
J.
Huang
,
C.
Shu
, and
Y.
Chew
, “
Numerical investigation of transporting droplets by spatiotemporally controlling substrate wettability
,”
J. Colloid Interface Sci.
328
(
1
),
124
133
(
2008
).
35.
M.
Sussman
,
P.
Smereka
, and
S.
Osher
, “
A level set approach for computing solutions to incompressible two-phase flow
,”
J. Comput. Phys.
114
(
1
),
146
159
(
1994
).
36.
Y.
Dai
,
Z.
Zhou
,
J.
Lin
, and
J.
Han
, “
Modeling of two-phase flow in rough-walled fracture using level set method
,”
Geofluids
2017
,
2429796
.
37.
H.
Grzybowski
and
R.
Mosdorf
, “
Modelling of two-phase flow in a minichannel using level-set method
,”
J. Phys.: Conf. Ser.
530
,
012049
(
2014
).
38.
C. Multiphysics, Comsol multiphysics CFD module user guide (version 5.3 a), COMSOL,
2015
,
208
265
.
39.
H.
Matsui
,
Y.
Noda
, and
T.
Hasegawa
, “
Hybrid energy-minimization simulation of equilibrium droplet shapes on hydrophilic/hydrophobic patterned surfaces
,”
Langmuir
28
(
44
),
15450
15453
(
2012
).
You do not currently have access to this content.