The Leidenfrost phenomenon in its most common form is encountered when a droplet is levitated and driven by its own vapor. The recently discovered “cold Leidenfrost phenomenon” expands this phenomenon into low-temperature regimes. Although various theoretical models have been proposed, analytical exploration on generalized dimensionless laws is still absent. In this work, we elucidated the role of the dimensionless Jakob number in the Leidenfrost phenomenon through theoretical modeling. The model was verified by examining the cold Leidenfrost phenomenon of both a dry ice nub on the surface of water and a liquid nitrogen droplet on a smooth silicon surface. Regardless of the specific configuration, the dimensionless temperature distribution in the vapor film only depends on the Jakob number of the vapor and presents linear dependence when the Jakob number is below 0.25. This theoretical model would facilitate the exploration of physics for Leidenfrost events and, therefore, guide prediction as well as the design of applications in the future.

1.
B.
Gottfried
,
C.
Lee
, and
K.
Bell
, “
The Leidenfrost phenomenon: Film boiling of liquid droplets on a flat plate
,”
Int. J. Heat Mass Transfer
9
,
1167
(
1966
).
2.
D.
Quéré
, “
Leidenfrost dynamics
,”
Annu. Rev. Fluid Mech.
45
,
197
(
2013
).
3.
A.
Hashmi
,
Y.
Xu
,
B.
Coder
,
P. A.
Osborne
,
J.
Spafford
,
G. E.
Michael
,
G.
Yu
, and
J.
Xu
, “
Leidenfrost levitation: Beyond droplets
,”
Sci. Rep.
2
,
797
(
2012
).
4.
H.
Linke
,
B. J.
Alemán
,
L. D.
Melling
,
M. J.
Taormina
,
M. J.
Francis
,
C. C.
Dow-Hygelund
,
V.
Narayanan
,
R. P.
Taylor
, and
A.
Stout
, “
Self-propelled Leidenfrost droplets
,”
Phys. Rev. Lett.
96
,
154502
(
2006
).
5.
A.
Grounds
,
R.
Still
, and
K.
Takashina
, “
Enhanced droplet control by transition boiling
,”
Sci. Rep.
2
,
720
(
2012
).
6.
G.
Dupeux
,
T.
Baier
,
V.
Bacot
,
S.
Hardt
,
C.
Clanet
, and
D.
Quéré
, “
Self-propelling uneven Leidenfrost solids
,”
Phys. Fluids
25
,
051704
(
2013
).
7.
K.
Piroird
,
B. D.
Texier
,
C.
Clanet
, and
D.
Quere
, “
Reshaping and capturing Leidenfrost drops with a magnet
,”
Phys. Fluids
25
,
032108
(
2013
).
8.
X. L.
Ma
,
J. J.
Lietor-Santos
, and
J. C.
Burton
, “
The many faces of a Leidenfrost drop
,”
Phys. Fluids
27
,
091109
(
2015
).
9.
G.
Castanet
,
O.
Caballina
, and
F.
Lemoine
, “
Drop spreading at the impact in the Leidenfrost boiling
,”
Phys. Fluids
27
,
063302
(
2015
).
10.
F.
Moreau
,
P.
Colinet
, and
S.
Dorbolo
, “
Leidenfrost explosions
,”
Phys. Fluids
25
,
091111
(
2013
).
11.
G. G.
Wells
,
R.
Ledesma-Aguilar
,
G.
McHale
, and
K.
Sefiane
, “
A sublimation heat engine
,”
Nat. Commun.
6
,
6390
(
2015
).
12.
R.
Abdelaziz
,
D.
Disci-Zayed
,
M. K.
Hedayati
,
J. H.
Pohls
,
A. U.
Zillohu
,
B.
Erkartal
,
V. S.
Chakravadhanula
,
V.
Duppel
,
L.
Kienle
, and
M.
Elbahri
, “
Green chemistry and nanofabrication in a levitated Leidenfrost drop
,”
Nat. Commun.
4
,
2400
(
2013
).
13.
S.
Saha
,
M. K.
Mandal
,
H.
Nonami
, and
K.
Hiraoka
, “
Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry
,”
Anal. Chim. Acta
839
,
1
(
2014
).
14.
H.
Kim
,
B.
Truong
,
J.
Buongiorno
, and
L.-W.
Hu
, “
On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena
,”
Appl. Phys. Lett.
98
,
083121
(
2011
).
15.
J. T.
Ok
,
E.
Lopez-Ona
,
D. E.
Nikitopoulos
,
H.
Wong
, and
S.
Park
, “
Propulsion of droplets on micro- and sub-micron ratchet surfaces in the Leidenfrost temperature regime
,”
Microfluid. Nanofluid.
10
,
1045
(
2011
).
16.
R. L.
Agapov
,
J. B.
Boreyko
,
D. P.
Briggs
,
B. R.
Srijanto
,
S. T.
Retterer
,
C. P.
Collier
, and
N. V.
Lavrik
, “
Asymmetric wettability of nanostructures directs Leidenfrost droplets
,”
ACS Nano
8
,
860
(
2013
).
17.
C.
Kruse
,
T.
Anderson
,
C.
Wilson
,
C.
Zuhlke
,
D.
Alexander
,
G.
Gogos
, and
S.
Ndao
, “
Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces
,”
Langmuir
29
,
9798
(
2013
).
18.
H.-m.
Kwon
,
J. C.
Bird
, and
K. K.
Varanasi
, “
Increasing Leidenfrost point using micro-nano hierarchical surface structures
,”
Appl. Phys. Lett.
103
,
201601
(
2013
).
19.
H.
Nair
,
H. J.
Staat
,
T.
Tran
,
A.
van Houselt
,
A.
Prosperetti
,
D.
Lohse
, and
C.
Sun
, “
The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces
,”
Soft Matter
10
,
2102
(
2014
).
20.
I. U.
Vakarelski
,
N. A.
Patankar
,
J. O.
Marston
,
D. Y.
Chan
, and
S. T.
Thoroddsen
, “
Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces
,”
Nature
489
,
274
(
2012
).
21.
M.
Shi
,
X.
Ji
,
S.
Feng
,
Q.
Yang
,
T. J.
Lu
, and
F.
Xu
, “
Self-propelled hovercraft based on cold Leidenfrost phenomenon
,”
Sci. Rep.
6
,
28574
(
2016
).
22.
Y. S.
Song
,
D.
Adler
,
F.
Xu
,
E.
Kayaalp
,
A.
Nureddin
,
R. M.
Anchan
,
R. L.
Maas
, and
U.
Demirci
, “
Vitrification and levitation of a liquid droplet on liquid nitrogen
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
4596
(
2010
).
23.
T. M.
Schutzius
,
S.
Jung
,
T.
Maitra
,
G.
Graeber
,
M.
Köhme
, and
D.
Poulikakos
, “
Spontaneous droplet trampolining on rigid superhydrophobic surfaces
,”
Nature
527
,
82
(
2015
).
24.
S. D.
Janssens
,
S.
Koizumi
, and
E.
Fried
, “
Behavior of self-propelled acetone droplets in a Leidenfrost state on liquid substrates
,”
Phys. Fluids
29
,
032103
(
2017
).
25.
C.
Antonini
,
I.
Bernagozzi
,
S.
Jung
,
D.
Poulikakos
, and
M.
Marengo
, “
Water drops dancing on ice: How sublimation leads to drop rebound
,”
Phys. Rev. Lett.
111
,
014501
(
2013
).
26.
M.
Adda-Bedia
,
S.
Kumar
,
F.
Lechenault
,
S.
Moulinet
,
M.
Schillaci
, and
D.
Vella
, “
Inverse Leidenfrost effect: Levitating drops on liquid nitrogen
,”
Langmuir
32
,
4179
(
2016
).
27.
A.-L.
Biance
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost drops
,”
Phys. Fluids
15
,
1632
(
2003
).
28.
T. G.
Myers
and
J. P. F.
Charpin
, “
A mathematical model of the Leidenfrost effect on an axisymmetric droplet
,”
Phys. Fluids
21
,
063101
(
2009
).
29.
R.
Cantrell
, “
Gas-film effects in the linear pyrolysis of solids
,”
AIAA J.
1
,
1544
(
1963
).
30.
V. P.
Carey
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
(
Taylor & Francis
,
New York
,
2008
).
31.
B.
Sobac
,
A.
Rednikov
,
S.
Dorbolo
, and
P.
Colinet
, “
Self-propelled Leidenfrost drops on a thermal gradient: A theoretical study
,”
Phys. Fluids
29
,
082101
(
2017
).
32.
J. D.
Berry
,
I. U.
Vakarelski
,
D. Y. C.
Chan
, and
S. T.
Thoroddsen
, “
Navier slip model of drag reduction by Leidenfrost vapor layers
,”
Phys. Fluids
29
,
107104
(
2017
).
33.
F.
Celestini
,
T.
Frisch
,
A.
Cohen
,
C.
Raufaste
,
L.
Duchemin
, and
Y.
Pomeau
, “
Two dimensional Leidenfrost droplets in a Hele-Shaw cell
,”
Phys. Fluids
26
,
032103
(
2014
).
34.
C.
Raufaste
,
F.
Celestini
,
A.
Barzyk
, and
T.
Frisch
, “
Hole growth dynamics in a two dimensional Leidenfrost droplet
,”
Phys. Fluids
27
,
031704
(
2015
).
35.
G.
Bleiker
and
E.
Specht
, “
Film evaporation of drops of different shape above a horizontal plate
,”
Int. J. Therm. Sci.
46
,
835
(
2007
).
36.
S.
Anand
and
K. K.
Varanasi
, “
Articles and methods for levitating liquids on surfaces, and devices incorporating the same
,” U.S. patent WO2013188702 (
December 19, 2013
).
You do not currently have access to this content.