Single-particle trapping mechanisms into microcavities are still puzzling for size-based particle/cell sorting in microfluidics. Aiming to verify the prediction of particle-wall collision trapping mechanism, we explore the effects of the microcavity trailing wall on the single-particle trapping behaviors for various microcavity aspect ratios (λ = 0.5–5) and inlet Reynolds numbers (Re = 5–400), uncovering three new trapping phenomena, namely, contact trapping, collision trapping, and rapid trapping. We characterize the particle velocity variation during the trapping process. We also investigate the separatrix topology (streamlines between the microvortex and microchannel flow) and map the different particle trapping phenomena. The particle trapping results from the combined effects of the microcavity trailing wall, the separatrix topology, and the particle dynamics. The results provide new insight into the fundamental understanding of particle trapping mechanisms and could guide the applications of microcavity-based microfluidics.

1.
D.
Gritsenko
,
Y.
Lin
,
V.
Hovorka
,
Z.
Zhang
,
A.
Ahmadianyazdi
, and
J.
Xu
, “
Vibrational modes prediction for water-air bubbles trapped in circular microcavities
,”
Phys. Fluids
30
,
082001
(
2018
).
2.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N.-T.
Nguyen
,
M.
Ebrahimi Warkiani
, and
W.
Li
, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab Chip
16
,
10
34
(
2016
).
3.
W.
Al-Faqheri
,
T. H. G.
Thio
,
M. A.
Qasaimeh
,
A.
Dietzel
,
M.
Madou
, and
A.
Al-Halhouli
, “
Particle/cell separation on microfluidic platforms based on centrifugation effect: A review
,”
Microfluid. Nanofluid.
21
,
102
(
2017
).
4.
D.
Di Carlo
,
J. F.
Edd
,
K. J.
Humphry
,
H. A.
Stone
, and
M.
Toner
, “
Particle segregation and dynamics in confined flows
,”
Phys. Rev. Lett.
102
,
094503
(
2009
).
5.
P.
Sajeesh
and
A. K.
Sen
, “
Particle separation and sorting in microfluidic devices: A review
,”
Microfluid. Nanofluid.
17
,
1
52
(
2014
).
6.
H.
Amini
,
W.
Lee
, and
D.
Di Carlo
, “
Inertial microfluidic physics
,”
Lab Chip
14
,
2739
2761
(
2014
).
7.
J. M.
Martel
and
M.
Toner
, “
Inertial focusing in microfluidics
,”
Annu. Rev. Biomed. Eng.
16
,
371
396
(
2015
).
8.
P.
Patil
,
Madhuprasad
,
T.
Kumeria
,
D.
Losic
, and
M.
Kurkuri
, “
Isolation of circulating tumour cells by physical means in a microfluidic device: A review
,”
RSC Adv.
5
,
89745
89762
(
2015
).
9.
C.
Renier
,
E.
Pao
,
J.
Che
,
H. E.
Liu
,
C. A.
Lemaire
,
M.
Matsumoto
 et al, “
Label-free isolation of prostate circulating tumor cells using vortex microfluidic technology
,”
NPJ Precis. Oncol.
1
,
15
(
2017
).
10.
M.
Dhar
,
J.
Wong
,
A.
Karimi
,
J.
Che
,
C.
Renier
,
M.
Matsumoto
,
M.
Triboulet
 et al, “
High efficiency vortex trapping of circulating tumor cells
,”
Biomicrofluidics
9
,
064116
(
2015
).
11.
J.
Che
,
V.
Yu
,
E. B.
Garon
,
J. W.
Goldman
, and
D.
Di Carlo
, “
Biophysical isolation and identification of circulating tumor cells
,”
Lab Chip
17
,
1452
1461
(
2017
).
12.
X.
Wang
,
J.
Zhou
, and
I.
Papautsky
, “
Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity
,”
Biomicrofluidics
7
,
044119
(
2013
).
13.
J.
Zhou
,
S.
Kasper
, and
I.
Papautsky
, “
Enhanced size-dependent trapping of particles using microvortices
,”
Microfluid. Nanofluid.
15
,
611
623
(
2013
).
14.
A. J.
Mach
,
J. H.
Kim
,
A.
Arshi
,
S. C.
Hur
, and
D.
Di Carlo
, “
Automated cellular sample preparation using a centrifuge-on-a-chip
,”
Lab Chip
11
,
2827
2834
(
2011
).
15.
S. C.
Hur
,
A. J.
Mach
, and
D.
Di Carlo
, “
High-throughput size-based rare cell enrichment using microscale vortices
,”
Biomicrofluidics
5
,
022206
(
2011
).
16.
K.
Hood
,
S.
Lee
, and
M.
Roper
, “
Inertial migration of a rigid sphere in three-dimensional Poiseuille flow
,”
J. Fluid Mech.
765
,
452
479
(
2015
).
17.
R.
Khojah
,
R.
Stoutamore
, and
D.
Di Carlo
, “
Size-tunable microvortex capture of rare cells
,”
Lab Chip
17
,
2542
2549
(
2017
).
18.
X.
Wang
,
X.
Yang
, and
I.
Papautsky
, “
An integrated inertial microfluidic vortex sorter for tunable sorting and purification of cells
,”
Technology
4
,
88
97
(
2016
).
19.
H.
Haddadi
and
D.
Di Carlo
, “
Inertial flow of a dilute suspension over cavities in a microchannel
,”
J. Fluid Mech.
811
,
436
467
(
2017
).
20.
H.
Haddadi
,
H.
Naghsh-Nilchi
, and
D.
Di Carlo
, “
Separation of cancer cells using vortical microfluidic flows
,”
Biomicrofluidics
12
,
014112
(
2018
).
21.
M.
Jiang
,
S.
Qian
, and
Z.
Liu
, “
Fully resolved simulation of single-particle dynamics in a microcavity
,”
Microfluid. Nanofluid.
22
,
144
(
2018
).
22.
F.
Shen
,
S.
Xue
,
B.
Zhou
,
M.
Xu
,
P.
Xiao
, and
Z. M.
Liu
, “
Evolution of single-particle recirculating orbits within a hydrodynamic microvortex
,”
J. Micromech. Microeng.
28
,
085018
(
2018
).
23.
F.
Shen
,
M.
Xu
,
Z.
Wang
, and
Z. M.
Liu
, “
Single-particle trapping, orbiting, and rotating in a microcavity using microfluidics
,”
Appl. Phys. Express
10
,
097301
(
2017
).
24.
D.
Di Carlo
, “
Inertial microfluidics
,”
Lab Chip
9
,
3038
3046
(
2009
).
25.
D.
Vigolo
,
I. M.
Griffiths
,
S.
Radl
, and
H. A.
Stone
, “
An experimental and theoretical investigation of particle-wall impacts in a T-junction
,”
J. Fluid Mech.
727
,
236
255
(
2013
).
26.
D.
Vigolo
,
S.
Radl
, and
H. A.
Stone
, “
Unexpected trapping of particles at a T-junction
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
4770
4775
(
2014
).
27.
F.
Shen
,
P.
Xiao
, and
Z. M.
Liu
, “
Microparticle image velocimetry (μPIV) study of microcavity flow at low Reynolds number
,”
Microfluid. Nanofluid.
19
,
403
417
(
2015
).
28.
F.
Shen
,
M.
Xu
,
B.
Zhou
,
Z.
Wang
, and
Z. M.
Liu
, “
Effects of geometry factors on microvortices evolution in confined square microcavities
,”
Microfluid. Nanofluid.
22
,
36
(
2018
).
29.
L.
Zhang
,
A. S.
Jebakumar
, and
J.
Abraham
, “
Lattice Boltzmann method simulation of Stokes number effects on particle trajectories in a channel flow
,”
Phys. Fluids
28
,
063306
(
2016
).
30.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
889
(
1983
).
You do not currently have access to this content.