This study examines experimentally the hydrodynamic interaction between a regular porous medium and an adjacent free-flow channel at low Reynolds numbers (Re < 1). The porous medium consists of evenly spaced micro-structured rectangular pillars arranged in a uniform pattern, while the free-flow channel features a rectangular cross-sectional area. The overall arrangement comprises a polydimethylsiloxane microfluidic model where distilled water, doped with fluorescent particles, is the examined fluid. Using micro-particle image velocimetry, single-phase quantitative velocity measurements are carried out at the pore scale to reveal the microscopic characteristics of the flow for such a coupled system. Interfacial velocity-slip and stress-jump coefficients are also evaluated with a volume-averaging method based on the Beavers-Joseph and Ochoa-Tapia-Whitaker models, respectively. The results show that, from a microscopic point of view, parallel flow at the interface is not obtained due to the periodically generated U-shaped flow profile between the interface pillars. However, the interface coefficients show no sensitivity to moderate flow angles. The highly resolved experimental information obtained in this study can also be used for the validation of numerical models providing a unique dataset for free-flow and porous media coupled systems.

1.
E.
Shahraeeni
,
P.
Lehmann
, and
D.
Or
, “
Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores
,”
Water Resour. Res.
48
(
9
),
W09525
, (
2012
).
2.
V. P.
Chauhan
,
T.
Stylianopoulos
,
Y.
Boucher
, and
R. K.
Jain
, “
Delivery of molecular and nanoscale medicine to tumors: Transport barriers and strategies
,”
Annu. Rev. Chem. Biomol. Eng.
2
(
1
),
281
298
(
2011
).
3.
V.
Gurau
,
H.
Liu
, and
S.
Kakaç
, “
Two-dimensional model for proton exchange membrane fuel cells
,”
AIChE J.
44
(
11
),
2410
2422
(
1998
).
4.
W.
Dahmen
,
T.
Gotzen
,
S.
Müller
, and
M.
Rom
, “
Numerical simulation of transpiration cooling through porous material
,”
Int. J. Numer. Methods Fluids
76
(
6
),
331
365
(
2014
).
5.
P.
Verboven
,
D.
Flick
,
B. M.
Nicolaï
, and
G.
Alvarez
, “
Modelling transport phenomena in refrigerated food bulks, packages and stacks: Basics and advances
,”
Int. J. Refrig.
29
(
6
),
985
997
(
2006
).
6.
M.
Mößner
and
R.
Radespiel
, “
Flow simulations over porous media—Comparisons with experiments
,”
Comput. Fluids
154
,
358
370
(
2017
).
7.
J.
Bear
,
Dynamics of Fluids in Porous Media
(
Dover Publishing
,
1972
), ISBN: 10: 0-486-65675-6.
8.
H. C.
Brinkman
, “
A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles
,”
Appl. Sci. Res.
1
,
27
(
1949
).
9.
B.
Goyeau
,
D.
Lhuillier
,
D.
Gobin
, and
M. G.
Velarde
, “
Momentum transport at a fluid–porous interface
,”
Int. J. Heat Mass Transfer
46
(
21
),
4071
4081
(
2003
).
10.
R.
Rosenzweig
and
U.
Shavit
, “
The laminar flow field at the interface of a Sierpinski carpet configuration
,”
Water Resour. Res.
43
(
10
),
1395
, https://doi.org/10.1029/2006wr005801 (
2007
).
11.
D. A.
Nield
, “
The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface
,”
Int. J. Heat Fluid Flow
12
(
3
),
269
272
(
1991
).
12.
N.
Martys
,
D. P.
Bentz
, and
E. J.
Garboczi
, “
Computer simulation study of the effective viscosity in Brinkman’s equation
,”
Phys. Fluids
6
(
4
),
1434
1439
(
1998
).
13.
L.
Durlofsky
and
J. F.
Brady
, “
Analysis of the Brinkman equation as a model for flow in porous media
,”
Phys. Fluids
30
(
11
),
3329
(
1998
).
14.
A. J.
Basu
and
A.
Khalili
, “
Computation of flow through a fluid-sediment interface in a benthic chamber
,”
Phys. Fluids
11
(
6
),
1395
1405
(
1999
).
15.
K.
Mosthaf
,
K.
Baber
,
B.
Flemisch
,
R.
Helmig
,
A.
Leijnse
,
I.
Rybak
, and
B.
Wohlmuth
, “
A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow
,”
Water Resour. Res.
47
(
10
),
W10522
, https://doi.org/10.1029/2011wr010685 (
2011
).
16.
M.
Hassanizadeh
and
W. G.
Gray
, “
General conservation equations for multi-phase systems: 1. Averaging procedure
,”
Adv. Water Resour.
2
,
131
144
(
1979
).
17.
Z.
Wu
and
P.
Mirbod
, “
Experimental analysis of the flow near the boundary of random porous media
,”
Phys. Fluids
30
(
4
),
047103
(
2018
).
18.
G. S.
Beavers
and
D. D.
Joseph
, “
Boundary conditions at a naturally permeable wall
,”
J. Fluid Mech.
30
(
1
),
197
207
(
1967
).
19.
P. G.
Saffman
, “
On the boundary condition at the surface of a porous medium
,”
Stud. Appl. Math.
50
(
2
),
93
101
(
1971
).
20.
R. E.
Larson
and
J. J. L.
Higdon
, “
Microscopic flow near the surface of two-dimensional porous media. Part 2. Transverse flow
,”
J. Fluid Mech.
178
(
-1
),
119
136
(
1987
).
21.
M.
Sahraoui
and
M.
Kaviany
, “
Slip and no-slip velocity boundary conditions at interface of porous, plain media
,”
Int. J. Heat Mass Transfer
35
(
4
),
927
943
(
1992
).
22.
J. K.
Arthur
,
D. W.
Ruth
, and
M. F.
Tachie
, “
Porous medium flow and an overlying parallel flow: PIV interrogation area and overlaps, interfacial location, and depth ratio effects
,”
Transp. Porous Media
97
(
1
),
5
23
(
2013
).
23.
G. S.
Beavers
,
E. M.
Sparrow
, and
R. A.
Magnuson
, “
Experiments on coupled parallel flows in a channel and a bounding porous medium
,”
J. Basic Eng.
92
(
4
),
843
848
(
1970
).
24.
G. S.
Beavers
,
E. M.
Sparrow
, and
B. A.
Masha
, “
Boundary condition at a porous surface which bounds a fluid flow
,”
AIChE J.
20
(
3
),
596
597
(
1974
).
25.
D. F.
James
and
A. M. J.
Davis
, “
Flow at the interface of a model fibrous porous medium
,”
J. Fluid Mech.
426
,
47
72
(
2001
).
26.
G. I.
Taylor
, “
A model for the boundary condition of a porous material. Part 1
,”
J. Fluid Mech.
49
(
2
),
319
326
(
1971
).
27.
S.
Richardson
, “
A model for the boundary condition of a porous material. Part 2
,”
J. Fluid Mech.
49
(
2
),
327
336
(
1971
).
28.
J. A.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development
,”
Int. J. Heat Mass Transfer
38
(
14
),
2635
2646
(
1995
).
29.
J. A.
Ochoa-Tapia
and
S.
Whitaker
, “
Momentum transfer at the boundary between a porous medium and a homogeneous fluid—II. Comparison with experiment
,”
Int. J. Heat Mass Transfer
38
(
14
),
2647
2655
(
1995
).
30.
M.
Chandesris
and
D.
Jamet
, “
Boundary conditions at a planar fluid–porous interface for a Poiseuille flow
,”
Int. J. Heat Mass Transfer
49
(
13-14
),
2137
2150
(
2006
).
31.
M.
Chandesris
and
D.
Jamet
, “
Boundary conditions at a fluid–porous interface: An a priori estimation of the stress jump coefficients
,”
Int. J. Heat Mass Transfer
50
(
17-18
),
3422
3436
(
2007
).
32.
K.
Baber
,
K.
Mosthaf
,
B.
Flemisch
,
R.
Helmig
,
S.
Müthing
, and
B.
Wohlmuth
, “
Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow
,”
IMA J. Appl. Math.
77
(
6
),
887
909
(
2012
).
33.
R.
Helmig
,
B.
Flemisch
,
M.
Wolff
,
A.
Ebigbo
, and
H.
Class
, “
Model coupling for multiphase flow in porous media
,”
Adv. Water Resour.
51
,
52
66
(
2013
).
34.
V. A.
Jambhekar
,
R.
Helmig
,
N.
Schröder
, and
N.
Shokri
, “
Free-flow–porous-media coupling for evaporation-driven transport and precipitation of salt in soil
,”
Transp. Porous Media
110
(
2
),
251
280
(
2015
).
35.
R.
Masson
,
L.
Trenty
, and
Y.
Zhang
, “
Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface
,”
J. Comput. Phys.
321
,
708
728
(
2016
).
36.
H. K.
Moffatt
, “
Viscous and resistive eddies near a sharp corner
,”
J. Fluid Mech.
18
(
1
),
1
18
(
1964
).
37.
J.-T.
Jeong
, “
Slip boundary condition on an idealized porous wall
,”
Phys. Fluids
13
(
7
),
1884
1890
(
2001
).
38.
C. J.
Heaton
, “
On the appearance of Moffatt eddies in viscous cavity flow as the aspect ratio varies
,”
Phys. Fluids
20
(
10
),
103102
(
2008
).
39.
X.
Chu
,
B.
Weigand
, and
V.
Vaikuntanathan
, “
Flow turbulence topology in regular porous media: From macroscopic to microscopic scale with direct numerical simulation
, ”
Phys. Fluids
30
(
6
),
065102
(
2018
).
40.
X.
Chu
,
G.
Yang
,
S.
Pandey
, and
B.
Weigand
, “
Direct numerical simulation of convective heat transfer in porous media
,”
Int. J. Heat Mass Transfer
133
,
11
20
(
2019
).
41.
G.
Yang
,
B.
Weigand
,
A.
Terzis
,
K.
Weishaupt
, and
R.
Helmig
, “
Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures
,”
Transp. Porous Media
122
(
1
),
145
167
(
2018
).
42.
S. K.
Gupte
and
S. G.
Advani
, “
Flow near the permeable boundary of a porous medium: An experimental investigation using LDA
,”
Exp. Fluids
22
(
5
),
408
422
(
1997
).
43.
M. F.
Tachie
,
D. F.
James
, and
I. G.
Currie
, “
Slow flow through a brush
,”
Phys. Fluids
16
(
2
),
445
451
(
2004
).
44.
P.
Prinos
,
D.
Sofialidis
, and
E.
Keramaris
, “
Turbulent flow over and within a porous bed
,”
J. Hydraul. Eng.
129
(
9
),
720
733
(
2003
).
45.
M. F.
Tachie
,
D. F.
James
, and
I. G.
Currie
, “
Velocity measurements of a shear flow penetrating a porous medium
,”
J. Fluid Mech.
493
,
319
343
(
2003
).
46.
A.
Goharzadeh
,
A.
Khalili
, and
B. B.
Jørgensen
, “
Transition layer thickness at a fluid-porous interface
,”
Phys. Fluids
17
(
5
),
057102
(
2005
).
47.
J. K.
Arthur
,
D. W.
Ruth
, and
M. F.
Tachie
, “
PIV measurements of flow through a model porous medium with varying boundary conditions
,”
J. Fluid Mech.
629
,
343
(
2009
).
48.
J. M. K.
Ng
,
I.
Gitlin
,
A. D.
Stroock
, and
G. M.
Whitesides
, “
Components for integrated poly(dimethylsiloxane) microfluidic systems
,”
Electrophoresis
23
(
20
),
3461
3473
(
2002
).
49.
J.
Friend
and
L.
Yeo
, “
Fabrication of microfluidic devices using polydimethylsiloxane
,”
Biomicrofluidics
4
(
2
),
026502
(
2010
).
50.
N. K.
Karadimitriou
,
M.
Musterd
,
P. J.
Kleingeld
,
M. T.
Kreutzer
,
S. M.
Hassanizadeh
, and
V. J.
Niasar
, “
On the fabrication of PDMS micromodels by rapid prototyping, and their use in two-phase flow studies
,”
Water Resour. Res.
49
(
4
),
2056
2067
, https://doi.org/10.1002/wrcr.20196 (
2013
).
51.
I. M.
Zarikos
,
S. M.
Hassanizadeh
,
L. M.
van Oosterhout
, and
W.
van Oordt
, “
Manufacturing a micro-model with integrated fibre optic pressure sensors
,”
Transp. Porous Media
122
(
1
),
221
234
(
2018
).
52.
T.
Jiang
,
Y.
Ren
,
W.
Liu
,
D.
Tang
,
Y.
Tao
,
R.
Xue
, and
H.
Jiang
, “
Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks
,”
Phys. Fluids
30
(
11
),
112003
(
2018
).
53.
Y.
Ren
,
W.
Liu
,
Z.
Wang
, and
Y.
Tao
, “
Induced-charge electrokinetics in rotating electric fields: A linear asymptotic analysis
,”
Phys. Fluids
30
(
6
),
062006
(
2018
).
54.
W.
Liu
,
Y.
Ren
,
Y.
Tao
,
X.
Chen
,
B.
Yao
,
M.
Hui
, and
L.
Bai
, “
Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming
,”
Phys. Fluids
29
(
11
),
112002
(
2017
).
55.
N. K.
Karadimitriou
,
V.
Joekar-Niasar
, and
O. G.
Brizuela
, “
Hydro-dynamic solute transport under two-phase flow conditions
,”
Sci. Rep.
7
(
1
),
6624
(
2017
).
56.
B.
Ling
,
M.
Oostrom
,
A. M.
Tartakovsky
, and
I.
Battiato
, “
Hydrodynamic dispersion in thin channels with micro-structured porous walls
,”
Phys. Fluids
30
(
7
),
076601
(
2018
).
57.
J. G.
Santiago
,
S. T.
Wereley
,
C. D.
Meinhart
,
D. J.
Beebe
, and
R. J.
Adrian
, “
A particle image velocimetry system for microfluidics
,”
Exp. Fluids
25
(
4
),
316
319
(
1998
).
58.
S. T.
Wereley
and
C. D.
Meinhart
, “
Recent advances in micro-particle image velocimetry
,”
Annu. Rev. Fluid Mech.
42
(
1
),
557
576
(
2010
).
59.
O.
Uzol
and
C.
Camci
, “
The effect of sample size, turbulence intensity and the velocity field on the experimental accuracy of ensemble averaged PIV measurements
,” in
4th International Symposium on Particle Image Velocimetry
,
Gottingen, Germany
,
17–19 September 2001
.
60.
D.
Michaelis
,
D. R.
Neal
, and
B.
Wieneke
, “
Peak-locking reduction for particle image velocimetry
,”
Meas. Sci. Technol.
27
(
10
),
104005
(
2016
).
61.
W.
Thielicke
and
E.
Stamhuis
, “
PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB
,”
J. Open Res. Software
2
(
1
),
1202
(
2014
).
62.
B.
Wieneke
, “
PIV uncertainty quantification from correlation statistics
,”
Meas. Sci. Technol.
26
(
7
),
074002
(
2015
).
63.
I.
Zarikos
,
A.
Terzis
,
S. M.
Hassanizadeh
, and
B.
Weigand
, “
Velocity distributions in trapped and mobilized non-wetting phase ganglia in porous media
,”
Sci. Rep.
8
(
1
),
13228
(
2018
).
64.
C.
Shen
and
J. M.
Floryan
, “
Low Reynolds number flow over cavities
,”
Phys. Fluids
28
(
11
),
3191
(
1985
).
65.
P. N.
Shankar
and
M. D.
Deshpande
, “
Fluid mechanics in the driven cavity
,”
Annu. Rev. Fluid Mech.
32
,
93
136
(
2000
).
66.
F. J.
Valdés-Parada
,
B.
Goyeau
, and
J.
Alberto Ochoa-Tapia
, “
Diffusive mass transfer between a microporous medium and an homogeneous fluid: Jump boundary conditions
,”
Chem. Eng. Sci.
61
(
5
),
1692
1704
(
2006
).
67.
W. P.
Breugem
,
B. J.
Boersma
, and
R. E.
Uittenbogaard
, “
The laminar boundary layer over a permeable wall
,”
Transp. Porous Media
59
(
3
),
267
300
(
2005
).
68.
G.
Yang
,
E.
Coltman
,
K.
Weishaupt
,
A.
Terzis
,
R.
Helmig
, and
B.
Weigand
, “
On the Beavers–Joseph interface condition for non-parallel coupled channel flow over a porous structure at high Reynolds numbers
,”
Transp. Porous Media
(to be published).
You do not currently have access to this content.