In this paper, the free convective flow around an engineered porous fin with spherical connections is investigated experimentally and numerically. In addition, the effects of different positioning angles for different fin materials on thermal fin performance are analyzed. First, the copper, aluminum, and brass fins are made and their thermal performances under free convective flow are examined experimentally. Then, in order to extend the results, after validation the numerical analysis is carried out in steady and three-dimensional calculations. Then, at different positioning angles, the formed free convective flow around the porous fin is analyzed numerically and compared with the results of a rigid fin. The results show that the efficiency of the copper fins at all positioning angles is maximal. It was also found that the highest amount of Nusselt number occurs at the angle of 45°. In the numerical investigations, it is determined that the maximum increase in the Nusselt number of the engineered porous fins is about two times that of the rigid fin. Moreover, a relationship between the Nusselt number and the Rayleigh number is presented for a horizontal engineered porous fin in laminar free convection flow.

1.
S.
Mosayebidorcheh
,
M.
Hatami
,
T.
Mosayebidorcheh
, and
D.
Ganji
, “
Optimization analysis of convective–radiative longitudinal fins with temperature-dependent properties and different section shapes and materials
,”
Energy Convers. Manage.
106
,
1286
1294
(
2015
).
2.
H.
Kwon
,
Y.
Joo
, and
S. J.
Kim
, “
Analytic approach to thermal optimization of horizontally oriented radial plate-fin heat sinks in natural convection
,”
Energy Convers. Manage.
156
,
555
567
(
2018
).
3.
T. H.
Kim
,
K. H.
Do
, and
S. J.
Kim
, “
Closed-form correlations of pressure drop and thermal resistance for a plate fin heat sink with uniform air jet impingement
,”
Energy Convers. Manage.
136
,
340
349
(
2017
).
4.
R. A.
Wirtz
,
A Semi-Empirical Model for Porous Media Heat Exchanger Design
(
ASME-Publications-HTD
,
1997
), Vol. 349, pp.
155
162
.
5.
S.
Saedodin
,
S.
Zamzamian
,
M. E.
Nimvari
,
S.
Wongwises
, and
H. J.
Jouybari
, “
Performance evaluation of a flat-plate solar collector filled with porous metal foam: Experimental and numerical analysis
,”
Energy Convers. Manage.
153
,
278
287
(
2017
).
6.
H.
Panchal
and
R.
Sathyamurthi
, “
Experimental analysis of single-basin solar still with porous fins
,”
Int. J. Ambient Energy
2017
,
1
.
7.
S. A.
Showkat Ali
,
M.
Azarpeyvand
,
M.
Szőke
, and
C. R. I.
da Silva
, “
Boundary layer flow interaction with a permeable wall
,”
Phys. Fluids
30
,
085111
(
2018
).
8.
H.
Emami-Meybodi
, “
Stability analysis of dissolution-driven convection in porous media
,”
Phys. Fluids
29
,
014102
(
2017
).
9.
H.
Emami-Meybodi
, “
Dispersion-driven instability of mixed convective flow in porous media
,”
Phys. Fluids
29
,
094102
(
2017
).
10.
Z.
Ghorbani
,
A.
Riaz
, and
D.
Daniel
, “
Convective mixing in vertically-layered porous media: The linear regime and the onset of convection
,”
Phys. Fluids
29
,
084101
(
2017
).
11.
M.
Mesgarpour
,
A.
Heydari
, and
S.
Saedodin
, “
Numerical analysis of heat transfer and fluid flow in the bundle of porous tapered fins
,”
Int. J. Therm. Sci.
135
,
398
409
(
2019
).
12.
S.
Saedodin
and
S.
Sadeghi
, “
Temperature distribution in porous fins in natural convection condition
,”
Middle East J. Sci. Res.
13
(
6
),
812
817
(
2013
).
13.
M.
Hatami
and
D.
Ganji
, “
Thermal performance of circular convective–radiative porous fins with different section shapes and materials
,”
Energy Convers. Manage.
76
,
185
193
(
2013
).
14.
J.
Ma
,
Y.
Sun
,
B.
Li
, and
H.
Chen
, “
Spectral collocation method for radiative–conductive porous fin with temperature dependent properties
,”
Energy Convers. Manage.
111
,
279
288
(
2016
).
15.
B.
Kundu
and
K.-S.
Lee
, “
A proper analytical analysis of annular step porous fins for determining maximum heat transfer
,”
Energy Convers. Manage.
110
,
469
480
(
2016
).
16.
A.
Morega
, “
Optimal arrays of pin fins and plate fins in laminar forced convection
,”
J. Heat Transfer
115
,
75
81
(
1993
).
17.
S.
Kim
,
J.
Paek
, and
B.
Kang
, “
Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger
,”
J. Heat Transfer
122
,
572
578
(
2000
).
18.
T.-M.
Jeng
and
S.-C.
Tzeng
, “
Numerical study of confined slot jet impinging on porous metallic foam heat sink
,”
Int. J. Heat Mass Transfer
48
,
4685
4694
(
2005
).
19.
T.-M.
Jeng
,
S.-C.
Tzeng
, and
Y.-H.
Hung
, “
An analytical study of local thermal equilibrium in porous heat sinks using fin theory
,”
Int. J. Heat Mass Transfer
49
,
1907
1914
(
2006
).
20.
L.
Chuan
,
X.-D.
Wang
,
T.-H.
Wang
, and
W.-M.
Yan
, “
Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept
,”
Int. Commun. Heat Mass Transfer
65
,
52
57
(
2015
).
21.
Q.
Peng
,
E.
Jiaqiang
,
J.
Chen
,
W.
Zuo
,
X.
Zhao
, and
Z.
Zhang
, “
Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor
,”
Energy Convers. Manage.
155
,
276
286
(
2018
).
22.
S.
Kiwan
and
O.
Zeitoun
, “
Natural convection in a horizontal cylindrical annulus using porous fins
,”
Int. J. Numer. Methods Heat Fluid Flow
,
18
(
5
),
618
634
(
2008
).
23.
W.
Fu
and
S.
Chen
, “
A numerical study of heat transfer of a porous block with the random porosity model in a channel flow
,”
Heat Mass Transfer
38
,
695
704
(
2002
).
24.
P.-X.
Jiang
,
M.
Li
,
T.-J.
Lu
,
L.
Yu
, and
Z.-P.
Ren
, “
Experimental research on convection heat transfer in sintered porous plate channels
,”
Int. J. Heat Mass Transfer
47
,
2085
2096
(
2004
).
25.
P.-X.
Jiang
,
M.
Li
,
Y.-C.
Ma
, and
Z.-P.
Ren
, “
Boundary conditions and wall effect for forced convection heat transfer in sintered porous plate channels
,”
Int. J. Heat Mass Transfer
47
,
2073
2083
(
2004
).
26.
P.-X.
Jiang
and
X.-C.
Lu
, “
Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels
,”
Int. J. Heat Mass Transfer
49
(
9
),
1685
1695
(
2006
).
27.
A. T.
Pise
and
U. V.
Awasarmol
, “
Investigation of enhancement of natural convection heat transfer from engine cylinder with permeable fins
,”
Int. J. Mech. Eng. Technol.
1
(
1
),
238
247
(
2010
).
28.
W.
Zhong
,
K.
Xu
,
X.
Li
,
Y.
Liao
,
G.
Tao
, and
T.
Kagawa
, “
Determination of pressure drop for air flow through sintered metal porous media using a modified Ergun equation
,”
Adv. Powder Technol.
27
(
4
),
1134
1140
(
2016
).
29.
G.
Huang
,
Y.
Zhu
,
Z.
Liao
,
X.-L.
Ouyang
, and
P.-X.
Jiang
, “
Experimental investigation of transpiration cooling with phase change for sintered porous plates
,”
Int. J. Heat Mass Transfer
114
,
1201
1213
(
2017
).
30.
M.
Mesgarpour
,
A.
Heydari
, and
S.
Saddodin
, “
Investigating the effect of connection type of a sintered porous fin through a channel on heat transfer and fluid flow
,”
J. Therm. Anal. Calorim.
135
,
461
(
2018
).
31.
L.-G.
Leal
,
Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes
(
Cambridge University Press
,
2007
), ISBN: 9780521849104.
32.
R. S. R.
Gorla
and
A.
Bakier
, “
Thermal analysis of natural convection and radiation in porous fins
,”
Int. Commun. Heat Mass Transfer
38
,
638
645
(
2011
).
33.
T. L.
Bergman
,
A. S.
Lavine
,
F. P.
Incropera
, and
D. P.
Dewitt
,
Fundamentals of Heat and Mass Transfer
(
John Wiley & Sons, Inc.
,
2011
), ISBN 13: 978-0470-50197-9.
34.
S. W.
Churchill
and
H. H. S.
Chu
, “
Correlating equations for laminar and turbulent free convection from a vertical plate
,”
Int. J. Heat Mass Transfer
18
,
1323
1329
(
1975
).
35.
A.
Bejan
,
Convection Heat Transfer
(
Wiley
,
New York
,
2004
).
36.
H. K.
Versteeg
and
W.
Malalasekera
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
(
Pearson Education
,
2007
).
37.
B.
Liu
, “
Fuzzy process hybrid process and uncertain process
,”
J. Uncertain Syst.
2
,
3
16
(
2008
).
38.
I.
Lira
,
Evaluating the Measurement Uncertainty: Fundamentals and Practical Guidance
(
CRC Press
,
2002
).
39.
M.
Mesgarpour
,
A.
Heydari
, and
S.
Saddodin
, “
Numerical investigation of heat transfer in a sintered porous fin in a channel flow with the aim of material determination
,”
J. Heat Mass Transfer Research
(published online
2018
).
You do not currently have access to this content.