Translational and rotational dynamics of a transporting particle in the free molecular gas flow regime are investigated using an in-house, multi-species, three dimensional Direct Simulation Monte Carlo (DSMC) solver. The DSMC algorithm is modified to study free molecular gas flows and validated against the analytical results for the dynamics of a spherical particle. A particular focus of this work is on estimating the effects of particle size, shape, and orientation on the dynamics of an ellipsoidal particle in free molecular gas and comparing them with that of a spherical particle. Properties such as particle speed, temperature, drag, and heat transfer coefficients are considered for comparison. The effect of particle shape on the aforesaid properties is qualitatively discussed and quantified through a comprehensive analysis taking care of lift, pitching moment, particle rotation, and the associated resistive torque. The relaxation of an ellipsoidal particle to surrounding gas conditions is simulated at zero and non-zero angles of attack to demonstrate the effect of particle orientation. Furthermore, the particle size effect on its translational and rotational dynamics is discussed. Finally, the trajectory of a spherical particle is compared with that of an ellipsoidal particle at different eccentricities.

1.
P. S.
Epstein
, “
On the resistance experienced by spheres in their motion through gases
,”
Phys. Rev.
23
(
6
),
710
733
(
1924
).
2.
M. J.
Baines
,
I. P.
Williams
,
A. S.
Asebiomo
, and
R. L.
Agacy
, “
Resistance to the motion of a small sphere moving through a gas
,”
Mon. Not. R. Astron. Soc.
130
(
1
),
63
74
(
1965
).
3.
F. M.
Sauer
, “
Convective heat transfer from spheres in a free-molecule flow
,”
J. Aeronaut. Sci.
18
(
5
),
353
354
(
1951
).
4.
M. A.
Gallis
,
J. R.
Torczynski
, and
D. J.
Rader
, “
An approach for simulating the transport of spherical particles in a rarefied gas flow via the direct simulation Monte Carlo method
,”
Phys. Fluids
13
(
11
),
3482
3492
(
2001
).
5.
J. M.
Burt
, “
Monte-Carlo simulation of solid rocket exhaust plumes at high altitude
,” Ph.D. dissertation (
The University of Michigan
,
2006
).
6.
A. B.
Morris
,
D. B.
Goldstein
,
P. L.
Varghese
, and
L. M.
Trafton
, “
Approach for modeling rocket plume impingement and dust dispersal on the moon
,”
J. Spacecr. Rockets
52
(
2
),
362
374
(
2015
).
7.
Z.
Li
and
W.
Hai
, “
Drag force, diffusion coefficient, and electric mobility of small particles. I. Theory applicable to the free-molecule regime
,”
Phys. Rev. E
68
(
6
),
061206
(
2003
).
8.
Z.
Li
and
W.
Hai
, “
Drag force, diffusion coefficient, and electric mobility of small particles. II. Application
,”
Phys. Rev. E
68
(
6
),
061207
(
2003
).
9.
S. A.
Beresnev
,
V. G.
Chernyak
, and
G. A.
Fomyagin
, “
Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization
,”
J. Fluid Mech.
219
,
405
421
(
1990
).
10.
M.
Zastawny
,
G.
Mallouppas
,
F.
Zhao
, and
B. V.
Wachem
, “
Derivation of drag and lift force and torque coefficients for non-spherical particles in flows
,”
Int. J. Multiphase Flow
39
,
227
239
(
2012
).
11.
O.
Rafik
,
M.
Khalij
,
A.
Taniere
, and
B.
Arcen
, “
Drag, lift and torque coefficients for ellipsoidal particles: From low to moderate particle Reynolds numbers
,”
Comput. Fluids
113
,
53
64
(
2015
).
12.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. A
102
(
715
),
161
179
(
1922
).
13.
G. I.
Taylor
, “
The motion of ellipsoidal particles in a viscous fluid
,”
Proc. R. Soc. A
103
(
720
),
58
61
(
1923
).
14.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle
,”
Chem. Eng. Sci.
18
(
1
),
1
25
(
1963
).
15.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle—II: An extension
,”
Chem. Eng. Sci.
19
(
9
),
599
629
(
1964
).
16.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle—III: Shear fields
,”
Chem. Eng. Sci.
19
(
9
),
631
651
(
1964
).
17.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle—IV: Arbitrary fields of flow
,”
Chem. Eng. Sci.
19
(
10
),
703
727
(
1964
).
18.
H.
Brenner
, “
The Stokes resistance of an arbitrary particle—Part V: Symbolic operator representation of intrinsic resistance
,”
Chem. Eng. Sci.
21
(
1
),
97
109
(
1966
).
19.
P. H.
Mortensen
,
H. I.
Andersson
,
J. J. J.
Gillissen
, and
B. J.
Boersma
, “
Dynamics of prolate ellipsoidal particles in a turbulent channel flow
,”
Phys. Fluids
20
(
9
),
093302
(
2008
).
20.
J.
Lin
,
X.
Shi
, and
Z.
Yu
, “
The motion of fibers in an evolving mixing layer
,”
Int. J. Multiphase Flow
29
(
8
),
1355
1372
(
2003
).
21.
M.
Shapiro
and
M.
Goldenberg
, “
Deposition of glass fiber particles from turbulent air flow in a pipe
,”
J. Aerosol Sci.
24
(
1
),
65
87
(
1993
).
22.
J. D.
Klett
, “
Orientation model for particles in turbulence
,”
J. Atmos. Sci.
52
(
12
),
2276
2285
(
1995
).
23.
G. A.
Bird
,
Molecular Gas Dynamics and Direct Simulation of Gas Flows
(
Clarendon Press
,
Oxford
,
1994
), p.
508
.
24.
P. S.
Prasanth
and
J. K.
Kakkassery
, “
Direct simulation Monte Carlo (DSMC): A numerical method for transition-regime flows-A review
,”
J. Indian Inst. Sci.
86
(
3
),
169
192
(
2013
).
25.
R.
Kumar
and
A. K.
Chinnappan
, “
Development of a multi-species, parallel, 3D direct simulation Monte-Carlo solver for rarefied gas flows
,”
Comput. Fluids
159
,
204
216
(
2017
).
26.
A. K.
Chinnappan
,
G.
Malaikannan
, and
R.
Kumar
, “
Insights into flow and heat transfer aspects of hypersonic rarefied flow over a blunt body with aerospike using direct simulation Monte-Carlo approach
,”
Aerosp. Sci. Technol.
66
,
119
128
(
2017
).
27.
J. C.
Maxwell
, “
VII. On stresses in rarified gases arising from inequalities of temperature
,”
Philos. Trans. R. Soc. London
170
,
231
256
(
1879
).
28.
J. F.
Padilla
and
I. D.
Boyd
, “
Assessment of gas-surface interaction models for computation of rarefied hypersonic flow
,”
J. Thermophys. Heat Transfer
23
(
1
),
96
105
(
2009
).
29.
P. A.
Chambre
and
S. A.
Schaaf
,
Flow of Rarefied Gases
(
Princeton University Press
,
2017
), Vol. 4971.
30.
A. K.
Oppenheim
, “
Generalized theory of convective heat transfer in a free-molecule flow
,”
J. Aeronaut. Sci.
20
(
1
),
49
58
(
1953
).
31.
F. G.
Fan
and
G.
Ahmadi
, “
Wall deposition of small ellipsoids from turbulent air flows—A Brownian dynamics simulation
,”
J. Aerosol Sci.
31
(
10
),
1205
1229
(
2000
).
32.
M.
Mandø
and
L.
Rosendahl
, “
On the motion of non-spherical particles at high Reynolds number
,”
Powder Technol.
202
(
1-3
),
1
13
(
2010
).
33.
L.
Rosendahl
, “
Using a multi-parameter particle shape description to predict the motion of non-spherical particle shapes in swirling flow
,”
Appl. Math. Modell.
24
(
1
),
11
25
(
2000
).
34.
C.
Yin
,
L.
Rosendahl
,
S. K.
Knudsen
, and
H.
Srensen
, “
Modelling the motion of cylindrical particles in a nonuniform flow
,”
Chem. Eng. Sci.
58
(
15
),
3489
3498
(
2003
).
35.
R. A.
Millikan
, “
The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces
,”
Phys. Rev.
22
(
1
),
1
23
(
1923
).
36.
M. C.
Celenligil
,
J. N.
Moss
, and
R. C.
Blanchard
, “
Three-dimensional rarefied flow simulations for the aeroassist flight experiment vehicle
,”
AIAA J.
29
(
1
),
52
57
(
1991
).
37.
J. N.
Moss
,
C. E.
Glass
, and
F. A.
Greene
, “
Blunt body aerodynamics for hypersonic low density flows
,” in
Proceedings of 25th Symposium on Rarefied Gas Dynamics
(
Publishing House of Siberian Branch of the Russian Academy of Sciences
,
2006
), Vol. 1, pp.
753
758
.
38.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
(
Springer Science & Business Media
,
2012
), Vol. 1.
39.
S. K. P.
Sanjeevi
and
J. T.
Padding
, “
On the orientational dependence of drag experienced by spheroids
,”
J. Fluid Mech.
820
,
R1
(
2017
).
You do not currently have access to this content.