Anti-icing performance using the surface dielectric barrier discharge plasma actuator is studied using detailed visualization and surface thermal measurements. To reveal the physical mechanism of coupled aerodynamic and thermal effects on anti-icing, three types of actuators are designed and mounted on a NACA 0012 airfoil. The coupled aerodynamic and thermal effects are confirmed in still air. The results show that the plasma actuation is effective for in-flight anti-icing, and the anti-icing performance is directly related to the design of the plasma actuators based on the coupled aerodynamic and thermal effects. When the direction of plasma induced flow is consistent with the incoming flow, the heat generated by plasma discharge is concentrated in the region of the actuator and the ability of the actuator for heat transfer downstream is relatively weak during the anti-icing. When the induced flow is opposite to the incoming flow, there is less heat accumulation in the actuator region, while the ability of heat transfer downstream becomes stronger. With the consistent and opposite direction of induced flow, the plasma actuation can ensure that 57% and 81% chord of the lower surface of the airfoil are free of the ice accumulation, respectively. Another actuator is designed to induce the air jets approximately perpendicular to the airfoil surface. This exhibits both a stronger ability of heat accumulation locally and heat transfer downstream and hence ensures that there is no ice on the entire lower surface of the airfoil.

1.
R. W.
Gent
,
N. P.
Dart
, and
J. T.
Cansdale
, “
Aircraft icing
,”
Philos. Trans. R. Soc., A
358
,
2873
(
2000
).
2.
T.
Cebeci
and
F.
Kafyeke
, “
Aircraft icing
,”
Annu. Rev. Fluid Mech.
35
,
11
21
(
2003
).
3.
K. R.
Petty
and
C. D. J.
Floyd
, “
A statistical review of aviation airframe icing accidents in the US
,” in
Proceedings of the 11th Conference on Aviation, Range, and Aerospace, Hyannis, MA, 4-8 October 2004
(
American Meteorological Society
,
2004
).
4.
O.
Parent
and
A.
Ilinca
, “
Anti-icing and de-icing techniques for wind turbines: Critical review
,”
Cold Reg. Sci. Technol.
65
,
88
96
(
2011
).
5.
Z. A.
Janjua
,
B.
Turnbull
,
S.
Hibberd
, and
K.-S.
Choi
, “
Mixed ice accretion on aircraft wings
,”
Phys. Fluids
30
,
027101
(
2018
).
6.
M.
Pourbagian
,
B.
Talgorn
,
W.
Habashi
,
M.
Kokkolaras
, and
S. L.
Digabel
, “
Constrained problem formulations for power optimization of aircraft electro-thermal anti-icing systems
,”
Optim. Eng.
16
,
663
693
(
2015
).
7.
S. K.
Thomas
,
R. P.
Cassoni
, and
C. D.
MacArthur
, “
Aircraft anti-icing and de-icing techniques and modeling
,”
J. Aircr.
33
,
841
854
(
1996
).
8.
W.
Dong
,
J.
Zhu
,
M.
Zheng
, and
Y.
Chen
, “
Thermal analysis and testing of nonrotating cone with hot-air anti-icing system
,”
J. Propul. Power
31
,
896
903
(
2015
).
9.
A.
Abbas
,
J.
de Vicenteb
, and
E.
Valerob
, “
Aerodynamic technologies to improve aircraft performance
,”
Aerosp. Sci. Technol.
28
,
100
132
(
2013
).
10.
T. G.
Myers
,
J. P.
Charpin
, and
S. J.
Chapman
, “
The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface
,”
Phys. Fluids
14
,
2788
2803
(
2002
).
11.
N.
Chen
,
H.
Ji
,
G.
Cao
, and
Y.
Hu
, “
A three-dimensional mathematical model for simulating ice accretion on helicopter rotors
,”
Phys. Fluids
30
,
083602
(
2018
).
12.
A.
Lampton
and
J.
Valasek
, “
Prediction of icing effects on the lateral/directional stability and control of light airplanes
,”
Aerosp. Sci. Technol.
23
,
305
311
(
2012
).
13.
A.
Shinkafi
and
C.
Lawson
, “
Enhanced method of conceptual sizing of aircraft electro-thermal de-icing system
,”
Int. J. Aerosp. Mech. Eng.
8
,
1073
1080
(
2014
).
14.
P. C. E.
Harris
, “
Opportunities for next generation aircraft: Enabled by revolutionary materials
,” in
AIAA SDM Conference
(
AIAA
,
2011
).
15.
A.
Carlo
,
I.
Massimiliano
,
H.
Tobias
,
M.
Marco
, and
A.
Alidad
, “
Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems
,”
Cold Reg. Sci. Technol.
67
,
58
67
(
2011
).
16.
M.
Miwa
,
A.
Nakajima
,
A.
Fujishima
,
K.
Hashimoto
, and
T.
Watanabe
, “
Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces
,”
Langmuir
16
,
5754
5760
(
2000
).
17.
N.
Nagappan
,
V. V.
Golubev
, and
W.
Habashi
, “
Parametric analysis of icing control using synthetic jet actuators
,” AIAA Paper 2013-2453,
2013
.
18.
E.
Moreau
, “
Airflow control by non-thermal plasma actuators
,”
J. Phys. D: Appl. Phys.
40
,
605
636
(
2007
).
19.
T. N.
Jukes
and
K.-S.
Choi
, “
Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma
,”
Phys. Fluids
21
,
084103
(
2009
).
20.
J.
Little
and
M.
Samimy
, “
High-lift airfoil separation with dielectric barrier discharge plasma actuation
,”
AIAA J.
48
,
2884
2898
(
2010
).
21.
B. E.
Mertz
and
T. C.
Corke
, “
Single-dielectric barrier discharge plasma actuator modelling and validation
,”
J. Fluid Mech.
669
,
557
583
(
2011
).
22.
J.
Wang
,
K. S.
Choi
,
L.
Feng
,
T.
Jukes
, and
R. D.
Whalley
, “
Recent developments in DBD plasma flow control
,”
Prog. Aerosp. Sci.
62
,
52
78
(
2013
).
23.
L.
Shen
,
C.-Y.
Wen
, and
H.-A.
Chen
, “
Asymmetric flow control on a delta wing with dielectric barrier discharge actuators
,”
AIAA J.
54
,
652
658
(
2015
).
24.
X.
Meng
,
Y.
Long
,
J.
Wang
,
F.
Liu
, and
S.
Luo
, “
Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators
,”
Phys. Fluids
30
,
024101
(
2018
).
25.
N. L.
Aleksandrov
,
S. V.
Kindysheva
,
M. M.
Nudnova
, and
A. Y.
Starikovskiy
, “
Mechanism of ultra-fast heating in a non-equilibrium weakly ionized air discharge plasma in high electric fields
,”
J. Phys. D: Appl. Phys.
43
,
255201
(
2010
).
26.
S. A.
Stanfield
,
J.
Menart
,
C.
DeJoseph
, Jr.
,
R. L.
Kimme
, and
J. R.
Hayes
, “
Rotational and vibrational temperatures for a dielectric barrier discharge in air using emission spectroscopy
,” AIAA Paper 2007-3876,
2007
.
27.
B.
Dong
,
J. M.
Bauchire
,
J. M.
Pouvesle
,
P.
Magnier
, and
D.
Hong
, “
Experimental study of a DBD surface discharge for the active flow control of subsonic airflow
,”
J. Phys. D: Appl. Phys.
41
,
155201
(
2008
).
28.
R.
Joussot
,
D.
Hong
,
H.
Rabat
,
V.
Boucinha
,
R.
Weber-Rozenbaum
, and
A. L.
Chesneau
, “
Thermal characterization of a DBD plasma actuator: Dielectric temperature measurements using infrared thermography
,” AIAA Paper 2010-5102,
2010
.
29.
R.
Erfani
,
H. Z.
Behtash
, and
K.
Kontis
, “
Plasma actuator: Influence of dielectric surface temperature
,”
Exp. Therm. Fluid Sci.
42
,
258
264
(
2012
).
30.
T.
Rakshit
,
B.
Nicolas
,
M.
Eric
,
F.
Matthieu
,
L.
Gildas
, and
D.
Eva
, “
Temperature characterization of dielectric barrier discharge actuators: Influence of electrical and geometric parameters
,”
J. Phys. D: Appl. Phys.
47
,
255203
(
2014
).
31.
F.
Rodrigues
,
J.
Pascoa
, and
M.
Trancossi
, “
Heat generation mechanisms of DBD plasma actuators
,”
Exp. Therm. Fluid Sci.
90
,
55
65
(
2018
).
32.
F.
Rodrigues
,
J.
Pascoa
, and
M.
Trancossi
, “
Experimental analysis of dielectric barrier discharge plasma actuators thermal characteristics under external flow influence
,”
J. Heat Transf.
140
(
10
),
102801
(
2018
).
33.
X.
Meng
,
Z.
Chen
, and
K.
Song
, “
AC- and NS-DBD plasma flow control research
,” in
Proceedings of the 2nd NPU-DLR Workshop on Aerodynamics
(
DLR, Institut für Aerodynamik und Strömungstechnik
,
2014
), pp.
1
75
, DLR-IB 124-2014/5.
34.
X.
Meng
,
J.
Cai
,
Y.
Tian
,
X.
Han
, and
D.
Zhang
, “
Experimental study of anti-icing and deicing on a cylinder by DBD plasma actuation
,” AIAA Paper 2016-4019,
2016
.
35.
J.
Cai
,
Y.
Tian
,
X.
Meng
,
X.
Han
,
D.
Zhang
, and
H.
Hu
, “
An experimental study of icing control using DBD plasma actuator
,”
Exp. Fluids
58
,
102
(
2017
).
36.
S. G.
Pouryoussefi
,
M.
Mirzaei
,
F.
Alinejad
, and
S. M.
Pouryoussefi
, “
Experimental investigation of separation bubble control on an iced airfoil using plasma actuator
,”
Appl. Therm. Eng.
100
,
1334
1341
(
2016
).
37.
W.
Zhou
,
Y.
Liu
,
H.
Hu
,
H.
Hu
, and
X.
Meng
, “
Utilization of thermal effect induced by plasma generation for aircraft icing mitigation
,”
AIAA J.
56
,
1097
1104
(
2018
).
38.
Y.
Tian
,
Z.
Zhang
,
J.
Cai
,
L.
Yang
, and
L.
Kang
, “
Experimental study of an anti-icing method over an airfoil based on pulsed dielectric barrier discharge plasma
,”
Chin. J. Aeronaut.
31
,
1449
1460
(
2018
).
39.
C.
Zhang
and
H.
Liu
, “
Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing
,”
Phys. Fluids
28
,
062107
(
2016
).
40.
T.
Okada
,
R.
Ishige
, and
S.
Ando
, “
Analysis of thermal radiation properties of polyimide and polymeric materials based on ATR-IR spectroscopy
,”
J. Photopolym. Sci. Technol.
29
,
251
254
(
2016
).
41.
R.
Ely
and
J.
Little
, “
Mixing layer excitation by dielectric barrier discharge plasma actuators
,” AIAA Paper 2013-2753,
2013
.
42.
S.
Grundmann
and
C.
Tropea
, “
Experimental transition delay using glow discharge plasma actuators
,”
Exp. Fluids
42
,
653
657
(
2007
).
43.
X.
Meng
,
H.
Hu
,
X.
Yan
,
F.
Liu
, and
S.
Luo
, “
Lift improvements using duty-cycled plasma actuation at low Reynolds numbers
,”
Aerosp. Sci. Technol.
72
,
123
133
(
2018
).
44.
R. J.
Hansman
,
K.
Yamaguchi
,
B.
Berkowitz
, and
M.
Potapczuk
, “
Modeling of surface roughness effects on glaze ice accretion
,”
J. Thermophys. Heat Transfer
5
,
54
60
(
1991
).
45.
C.
Enloe
,
T. E.
McLaughlin
,
R. D.
Van Dyken
,
K.
Kachner
,
E. J.
Jumper
, and
T. C.
Corke
, “
Mechanisms and responses of a single dielectric barrier plasma actuator: Plasma morphology
,”
AIAA J.
42
,
589
594
(
2004
).
46.
R. J.
Hansman
and
S. R.
Turnock
, “
Investigation of surface water behavior during glaze ice accretion
,”
J. Aircr.
26
,
140
147
(
1989
).
47.
B. L.
Messinger
, “
Equilibrium temperature of an unheated icing surface as a function of air speed
,”
J. Aeronaut. Sci.
20
,
29
42
(
1953
).
You do not currently have access to this content.