We examine the second order orientation tensor for the simplest molecular model relevant to a polymeric liquid in large-amplitude oscillatory shear (LAOS) flow, the rigid dumbbell suspension. For this, we use an approximate solution to the diffusion equation for rigid dumbbells, an expansion for the orientation distribution function truncated after the fourth power of the shear rate amplitude. We then calculate the second order orientation tensor, and then use this to calculate the order parameter tensor. We next examine the invariants of both the second order orientation tensor and the order parameter tensor. From the second invariant of the order parameter tensor, we calculate the scalar, the nematic order, and examine its evolution for a polymeric liquid in LAOS. We find this nematic order, our main result, to be even. We use Lissajous figures to illustrate the roles of the Weissenberg and Deborah numbers on the evolving order in LAOS. We use the low frequency limit of our main result to arrive at an expression for the nematic order in steady shear flow. Our work gives a first glimpse into macromolecular order in LAOS. Our work also provides analytical benchmarks for numerical solutions to the diffusion equation for both oscillatory and steady shear flows.

1.
A. J.
Giacomin
and
J. M.
Dealy
, “
Large-amplitude oscillatory shear
,” in
Techniques in Rheological Measurement
, edited by
A. A.
Collyer
(
Chapman & Hall
,
London & New York
;
Kluwer Academic Publishers
,
Dordrecht
,
1993
), Chap. 4, pp.
99
121
.
2.
A. J.
Giacomin
and
J. M.
Dealy
, “
Using large-amplitude oscillatory shear
,” in
Rheological Measurement
, 2nd ed., edited by
A. A.
Collyer
and
D. W.
Clegg
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1998
), Chap. 11, pp.
327
356
.
3.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19-20
),
1081
1099
(
2011
).
4.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Corrigenda: ‘Large-amplitude oscillatory shear flow from the corotational Maxwell model’ [J. Non-Newtonian Fluid Mech. 166, 1081–1099 (2011)]
,”
J. Non-Newtonian Fluid Mech.
187-188
,
48
(
2012
).
5.
R. H.
Ewoldt
and
N. A.
Bharadwaj
, “
Low-dimensional intrinsic material functions for nonlinear viscoelasticity
,”
Rheol. Acta
52
,
201
(
2013
).
6.
R. B.
Bird
,
D. C.
Evans
, and
H. R.
Warner
, “
Recoil in macromolecular solutions according to rigid dumbbell kinetic theory
,”
Appl. Sci. Res.
23
(
1
),
185
192
(
1971
).
7.
S.
Kim
and
X. J.
Fan
, “
A perturbation solution for rigid dumbbell suspensions in steady shear flow
,”
J. Rheol.
28
,
117
(
1984
).
8.
J. H.
Piette
,
L. M.
Jbara
,
C.
Saengow
, and
A. J.
Giacomin
, “
Exact coefficients for rigid dumbbell suspensions for steady shear flow material function expansions
,”
Phys. Fluids
31
(
2
),
021212
(
2019
).
9.
R. B.
Bird
,
H. R.
Warner
, Jr.
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,” in
Advances in Polymer Science
(
Fortschr. Hochpolymeren-Forschung.
,
1971
), Vol. 8, p.
1
.
10.
R. B.
Bird
,
C. F.
Curtiss
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 2nd ed. (
John Wiley & Sons, Inc.
,
New York
,
1987
), Vol. 2.
11.
A. M.
Schmalzer
and
A. J.
Giacomin
, “
Orientation in large-amplitude oscillatory shear
,”
Macromol. Theory Simul.
24
(
3
),
181
207
(
2015
).
12.
R. B.
Bird
,
O.
Hassager
,
R. C.
Armstrong
, and
C. F.
Curtiss
,
Dynamics of Polymeric Liquids
, 1st ed. (
John Wiley and Sons, Inc.
,
NY
,
1977
), Vol. 2.
13.
L. M.
Jbara
,
A. J.
Giacomin
, and
P. H.
Gilbert
, “
Macromolecular origins of fifth shear stress harmonic in large-amplitude oscillatory shear flow
,”
J. Soc. Rheol.
44
(
5
),
289
302
(
2016
).
14.
R. B.
Bird
and
R. C.
Armstrong
, “
Time-dependent flows of dilute solutions of rodlike macromolecules
,”
J. Chem. Phys.
56
,
3680
(
1972
).
15.
W. E.
Stewart
and
J. P.
Sørensen
, “
Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow
,”
Trans. Soc. Rheol.
16
,
1
(
1972
).
16.
H. C.
Öttinger
, “
A note on rigid dumbbell solutions at high shear rates
,”
J. Rheol.
32
,
135
(
1988
).
17.
A. M.
Schmalzer
, “
Large-amplitude oscillatory shear flow of rigid dumbbell suspensions
,” Ph.D. thesis,
Mechanical Engineering Department, University of Wisconsin
,
Madison, WI
,
2014
.
18.
L.
Jbara
and
A. J.
Giacomin
, “
Orientation distribution function pattern for rigid dumbbell suspensions in any simple shear flow
,”
Macromol. Theory Simul.
28
,
1800046
(
2018
).
19.
R. B.
Bird
,
A. J.
Giacomin
,
A. M.
Schmalzer
, and
C.
Aumnate
, “
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
,”
J. Chem. Phys.
140
,
074904
(
2014
).
20.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford University Press
,
1988
), Vol. 73.
21.
P. H.
Gilbert
and
A. J.
Giacomin
, “
Exact analytical Durometer hardness scale interconversion
,”
J. Test. Eval.
46
(
5
),
1995
2032
(
2018
).
22.
W. R.
Burghardt
, “
Molecular orientation and rheology in sheared lyotropic liquid crystalline polymers
,”
Macromol. Chem. Phys.
199
(
4
),
471
488
(
1998
).
You do not currently have access to this content.