Exact solutions for normal stress differences in polymeric liquids subjected to large-amplitude oscillatory shear flow (LAOS) contain many Bessel functions, each appearing in infinite sums. For the simplest relevant model of a polymeric liquid, the corotational Maxwell fluid, Bessel functions appear 38 times in the exact solution. By relevant, we mean that higher harmonics are predicted in LAOS. By contrast, approximate analytical solutions for normal stress differences in LAOS often take the form of the first few terms of a power series in the shear rate amplitude, and without any Bessel functions at all. Perhaps the best example of this, from continuum theory, is the Goddard integral expansion (GIE) that is arrived at laboriously. There is thus practical interest in extending the GIE to an arbitrary number of terms. However, each term in the GIE requires much more work than its predecessor. For the corotational Maxwell fluid, for instance, the GIE for the normal stress differences has yet to be taken beyond the fifth power of the shear rate amplitude. In this paper, we begin with the exact solution for normal stress difference responses in corotational Maxwell fluids, then perform an expansion by symbolic computation to confirm up to the fifth power, and then to continue the GIE. In this paper, for example, we continue the GIE to the 41st power of the shear rate amplitude. We use Ewoldt grids to show that our main result is highly accurate. We also show that, except in its zero-frequency limit, the radius of convergence of the GIE is infinite. We derive the pattern for the common denominators of the GIE coefficients and also for every numerator for the zeroth harmonic coefficients. We also find that the numerators of the other harmonics appear to be patternless.

1.
A.
Gemant
, “
Komplexe viskosität
,”
Naturwissenschaften
23
(
25
),
406
407
(
1935
).
2.
A.
Gemant
, “
The conception of a complex viscosity and its application to dielectrics
,”
Trans. Faraday Soc.
31
,
1582
1590
(
1935
); Erratum: The footnote on p. 1583, “15A. Gemant, Naturwissenschaften 23, 406, (1935).” should be “15A. Gemant, Naturwissenschaften 25, 406 (1935).”
3.
R. B.
Bird
and
A. J.
Giacomin
, “
Who conceived the complex viscosity?
,”
Rheol. Acta
51
(
6
),
481
486
(
2012
).
4.
A. J.
Giacomin
and
J. M.
Dealy
, “
Using large-amplitude oscillatory shear
,” in
Rheological Measurement
, 2nd ed., edited by
A. A.
Collyer
and
D. W.
Clegg
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1998
), Chap. 11, pp.
327
356
.
5.
K.
Hyun
,
M.
Wilhelm
,
C. O.
Klein
,
K. S.
Cho
,
J. G.
Nam
,
K. H.
Ahn
,
S. J.
Lee
,
R. H.
Ewoldt
, and
G. H.
McKinley
, “
A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS)
,”
Prog. Polym. Sci.
36
(
12
),
1697
1753
(
2011
).
6.
K. S.
Cho
,
Viscoelasticity of Polymers: Theory and Numerical Algorithms
, Springer Series in Materials Science, Vol. 241 (
Springer
,
Dordrecht
,
2016
).
7.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress
,”
Phys. Fluids
29
(
4
),
043101
(
2017
).
8.
A. J.
Giacomin
,
R. B.
Bird
,
L. M.
Johnson
, and
A. W.
Mix
, “
Large-amplitude oscillatory shear flow from the corotational Maxwell model
,”
J. Non-Newtonian Fluid Mech.
166
(
19-20
),
1081
1099
(
2011
); Errata: See after Ref. 6 of Ref. 7.
9.
Ad Hoc Committee on Official Nomenclature and Symbols, The Society of Rheology
, “
Official symbols and nomenclature of the society of rheology
,”
J. Rheol.
57
(
4
),
1047
1055
(
2013
).
10.
C.
Saengow
and
A. J.
Giacomin
, “
Normal stress differences from Oldroyd 8-constant framework: Exact analytical solution for large-amplitude oscillatory shear flow
,”
Phys. Fluids
29
(
12
),
121601
(
2017
).
11.
S. A.
Rogers
, “
In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity
,”
Rheol. Acta
56
(
5
),
501
525
(
2017
).
12.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Exact analytical solution for large-amplitude oscillatory shear flow
,”
Macromol. Theory Simul.
24
(
4
),
352
392
(
2015
).
13.
A. J.
Giacomin
and
J. M.
Dealy
, “
Large-amplitude oscillatory shear
,” in Techniques in Rheological Measurement, edited by
A. A.
Collyer
(
Chapman & Hall
,
London, New York
,
1993
), Chap. 4, pp.
99
121
.
14.
C.
Saengow
and
A. J.
Giacomin
, “
Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework
,”
Phys. Fluids
30
(
3
),
030703
(
2018
).
15.
P. H.
Gilbert
and
A. J.
Giacomin
, “
Complex polymer orientation
,”
Polymer
104
,
227
239
(
2016
).
16.
A. J.
Giacomin
,
P. H.
Gilbert
, and
A. M.
Schmalzer
, “
Fourier decomposition of polymer orientation in large-amplitude oscillatory shear flow
,”
Struct. Dyn.
2
(
2
),
024101
(
2015
).
17.
L.
Jbara
and
A. J.
Giacomin
, “
Orientation distribution function pattern for rigid dumbbell suspensions in any simple shear flow
,”
Macromol. Theory Simul.
28
,
1800046
(
2018
).
18.
R. B.
Bird
,
H. R.
Warner
, and
D. C.
Evans
, “
Kinetic theory and rheology of dumbbell suspensions with Brownian motion
,”
Adv. Polym. Sci.
8
,
1
90
(
1971
).
19.
P. H.
Gilbert
and
A. J.
Giacomin
, “
Molecular origins of higher harmonics in large- amplitude oscillatory shear flow: Shear stress response
,”
Phys. Fluids
28
(
10
),
103101
(
2016
).
20.
A. J.
Giacomin
and
C.
Saengow
, “
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
,”
Mod. Phys. Lett. B
32
(
12-13
),
1840036
(
2018
).
21.
L. M.
Jbara
,
A. J.
Giacomin
, and
P. H.
Gilbert
, “
Macromolecular origins of fifth shear stress harmonic in large-amplitude oscillatory shear flow
,”
Nihon Reoroji Gakkaishi
44
(
5
),
289
302
(
2016
).
22.
R. B.
Bird
and
A. J.
Giacomin
, “
Polymer fluid dynamics: Continuum and molecular approaches
,”
Annu. Rev. Chem. Biomol. Eng.
7
,
479
507
(
2016
).
23.
A. M.
Schmalzer
and
A. J.
Giacomin
, “
Orientation in large-amplitude oscillatory shear
,”
Macromol. Theory Simul.
24
(
3
),
181
207
(
2015
).
24.
R. B.
Bird
,
A. J.
Giacomin
,
A. M.
Schmalzer
, and
C.
Aumnate
, “
Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
,”
J. Chem. Phys.
140
(
7
),
074904
(
2014
).
25.
A. M.
Schmalzer
, “
Large-amplitude oscillatory shear flow of rigid dumbbell suspensions
,” Ph.D. thesis,
University of Wisconsin, Mechanical Engineering Department
,
Madison, WI
,
2014
.
26.
A. M.
Schmalzer
,
R. B.
Bird
, and
A. J.
Giacomin
, “
Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions
,”
J. Non-Newtonian Fluid Mech.
222
,
56
71
(
2015
).
27.
A. J.
Giacomin
,
C.
Saengow
,
M.
Guay
, and
C.
Kolitawong
, “
Padé approximants for large-amplitude oscillatory shear flow
,”
Rheol. Acta
54
(
8
),
679
693
(
2015
); Errata: In Eq. (35), “Sτ” should be “Sτ.”
28.
C.
Saengow
, “
Polymer process partitioning approach: Plastic pipe extrusion
,” Ph.D. thesis,
Mechanical and Aerospace Engineering Department, King Mongkut’s University of Technology North Bangkok
,
Bangkok, Thailand
,
2016
.
29.
C.
Saengow
, “
Polymer process partitioning: Extruding plastic pipe
,” Ph.D. thesis,
Polymers Research Group, Chemical Engineering Department, Queen’s University
,
Kingston, Canada
,
2016
.
30.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Extruding plastic pipe from eccentric dies
,”
J. Non-Newtonian Fluid Mech.
223
,
176
199
(
2015
).
31.
C.
Saengow
,
A. J.
Giacomin
, and
C.
Kolitawong
, “
Knuckle formation from melt elasticity in plastic pipe extrusion
,”
J. Non-Newtonian Fluid Mech.
242
,
11
22
(
2017
).
32.
C.
Saengow
and
A. J.
Giacomin
, “
Fluid elasticity in plastic pipe extrusion: Loads on die barrel
,”
Int. Polym. Process.
32
(
5
),
648
658
(
2017
).
33.
P.
Poungthong
,
C.
Saengow
,
A. J.
Giacomin
,
C.
Kolitawong
,
D.
Merger
, and
M.
Wilhelm
, “
Padé approximant for normal stress differences in large-amplitude oscillatory shear flow
,”
Phys. Fluids
30
(
4
),
040910
(
2018
).
34.
A. J.
Giacomin
,
R. B.
Bird
,
C.
Aumnate
,
A. M.
Mertz
,
A. M.
Schmalzer
, and
A. W.
Mix
, “
Viscous heating in large-amplitude oscillatory shear flow
,”
Phys. Fluids
24
(
10
),
103101
(
2012
).
35.
A. J.
Giacomin
,
R. B.
Bird
, and
H. M.
Baek
, “
Temperature rise in large-amplitude oscillatory shear flow from shear stress measurements
,”
Ind. Eng. Chem. Res.
52
,
2008
2017
(
2013
).
36.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids
, 1st ed. (
Wiley
,
New York
,
1977
), Vol. 1.
37.
J. G.
Oldroyd
, “
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids
,”
Proc. R. Soc. London, Ser. A
245
(
1241
),
278
297
(
1958
).
38.
Q.
and
J.
,
Polymer Rheology
(
Higher Education Press
,
Beijing
,
2002
).
39.
R. G.
Larson
,
Constitutive Equations for Polymer Melts and Solutions
(
Buttersworths
,
Boston
,
1988
).
40.
C. D.
Han
,
Rheology and Processing of Polymeric Materials: Volume I Polymer Rheology
(
Oxford University Press
,
New York
,
2007
).
41.
G.
Böhme
,
Strömungsmechanik Nicht-Newtonscher Fluide
(
Teubner
,
Stuttgart
,
1981
).
42.
C.
Saengow
and
A. J.
Giacomin
, “
Thermodynamic instability of polymeric liquids in large-amplitude oscillatory shear flow from corotational Maxwell fluid
,”
Fluid Dyn. Res.
50
(
6
),
065505
(
2018
).
43.
N. A.
Bharadwaj
and
R. H.
Ewoldt
, “
The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear
,”
J. Rheol.
58
(
4
),
891
910
(
2014
).
44.
J. J.
Kovacic
, “
An algorithm for solving second order linear homogeneous differential equations
,”
J. Symbolic Comput.
2
(
1
),
3
43
(
1986
).
45.
J. M.
Dealy
,
J. F.
Petersen
, and
T.-T.
Tee
, “
A concentric-cylinder rheometer for polymer melts
,”
Rheol. Acta
12
(
4
),
550
558
(
1973
).
46.
T.-T.
Tee
and
J. M.
Dealy
, “
Nonlinear viscoelasticity of polymer melts
,”
Trans. Soc. Rheol.
19
(
4
),
595
615
(
1975
).
47.
T.-T.
Tee
, “
Large amplitude oscillatory shearing of polymer melts
,” Ph.D. thesis,
Department of Chemical Engineering, McGill University
,
Montreal, Canada
,
1974
.
48.
R. H.
Ewoldt
,
P.
Winter
,
J.
Maxey
, and
G. H.
McKinley
, “
Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials
,”
Rheol. Acta
49
(
2
),
191
212
(
2010
).
49.
R. H.
Ewoldt
, “
Nonlinear viscoelastic materials: Bioinspired applications and new characterization measures
,” Ph.D. thesis,
Mechanical Engineering Department, Massachusetts Institute of Technology
,
Cambridge, MA
,
2009
.
50.
A. J.
Giacomin
and
C.
Saengow
, “
Molecular continua for polymeric liquids in large-amplitude oscillatory shear flow
,” PRG Report No. 030, QU-CHEE-PRG-TR–2017-30,
Polymers Research Group, Chemical Engineering Dept., Queen’s University
,
Kingston, Canada
,
May 2017
, pp.
1
4
.
51.
C.
Saengow
,
A. J.
Giacomin
,
N.
Khalaf
, and
M.
Guay
, “
Simple accurate expressions for shear stress in large-amplitude oscillatory shear flow
,”
Nihon Reoroji Gakkaishi
45
(
5
),
251
260
(
2017
).
52.
E. W.
Swokowski
,
Calculus with Analytic Geometry
, 2nd ed. (
Prindle, Weber & Schmidt
,
Boston
,
1979
).
53.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
(
National Bureau of Standards
,
Washington, D.C.
,
1972
), Vol. 55.
54.
W.
Rudin
,
Principles of Mathematical Analysis
(
McGraw-Hill
,
New York
,
1964
), Vol. 3.
55.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
, Revised 2nd ed. (
Wiley & Sons
,
New York
,
2007
).
56.
R. B.
Bird
,
W. E.
Stewart
,
E. N.
Lightfoot
, and
D. J.
Klingenberg
,
Introductory Transport Phenomena
(
Wiley & Sons
,
New York
,
2015
).

Supplementary Material

You do not currently have access to this content.