The breakup of coaxial liquid jets in a co-flowing gas stream under the radial thermal field is studied by the linear instability theory. A simplified physical model is established, and an analytical dimensionless dispersion relation for temporally axisymmetric perturbations is derived and solved numerically. The outer liquid-gas surface tension coefficient is assumed to be a linear function of temperature. Due to the radial temperature gradients, the time-dependent spatial variation of surface tension gives rise to a shear stress and induces Marangoni force upon the flow. The effects of different process parameters on the characteristics of unstable modes including the para-sinuous mode and the para-varicose mode are explored. It is found that the para-sinuous mode always dominates the jet instability in the parametric regions and the increasing temperature ratio of the surrounding gas stream and the inner liquid jet (T31) can reduce the maximum growth rates of unstable modes and corresponding dominant wavenumbers. The Reynolds number destabilizes the jet instability, and the Weber number suppresses it at relatively long wavelengths for both isothermal and non-isothermal situations. The Marangoni number and the Peclet number have a destabilizing effect for T31 < 1, but it is opposite for T31 > 1. These theoretical predictions would provide insight into underlying physical mechanisms of thermal jet breakup and compound droplet formation.

1.
G. T.
Vladisavljeviá
,
N.
Khalid
,
M. A.
Neves
,
T.
Kuroiwa
,
M.
Nakajima
,
K.
Uemura
,
S.
Ichikawa
, and
I.
Kobayashi
, “
Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery
,”
Adv. Drug Delivery Rev.
65
,
1626
1663
(
2013
).
2.
A. G.
Gaonkar
,
N.
Vasisht
,
A. R.
Khare
, and
R.
Sobel
,
Microencapsulation in the Food Industry: A Practical Implementation Guide
(
Elsevier
,
Amsterdam
,
2014
).
3.
A. R.
Abate
and
D. A.
Weitz
, “
High order multiple emulsions formed in poly dimethylsiloxane microfluidics
,”
Small
5
,
2030
2032
(
2009
).
4.
M. T.
Gokmen
and
F. E.
Du Prez
, “
Porous polymer particles: A comprehensive guide to synthesis, characterization, functionalization and applications
,”
Prog. Polym. Sci.
37
,
365
405
(
2012
).
5.
A. S.
Utada
,
E.
Lorenceau
,
D. R.
Link
,
P. D.
Kaplan
,
H. A.
Stone
, and
D. A.
Weitz
, “
Monodisperse double emulsions generated from a microcapillary device
,”
Science
308
,
537
541
(
2005
).
6.
W. J.
Duncanson
,
M.
Zieringer
,
O.
Wagner
,
J. N.
Wilking
,
A.
Abbaspourrad
,
R.
Haag
, and
D. A.
Weitz
, “
Microfluidic synthesis of monodisperse porous microspheres with size-tunable pores
,”
Soft Matter
8
,
10636
10640
(
2012
).
7.
I. G.
Loscertales
,
A.
Barrero
,
I.
Guerrero
,
R.
Cortijo
,
M.
Márquez
, and
A. M.
Gañán-Calvo
, “
Micro/nano encapsulation via electrified coaxial liquid jets
,”
Science
295
,
1695
1698
(
2002
).
8.
L. L.
Zhang
,
J. W.
Huang
,
T.
Si
, and
R. X.
Xu
, “
Coaxial electrospray of microparticles and nanoparticles for biomedical applications
,”
Expert Rev. Med. Devices
9
,
595
612
(
2012
).
9.
A. M.
Gañán-Calvo
, “
Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams
,”
Phys. Rev. Lett.
80
,
285
(
1998
).
10.
A. M.
Gañán-Calvo
,
R.
González-Prieto
,
P.
Riesco-Chueca
,
M. A.
Herrada
, and
M.
Flores-Mosquera
, “
Focusing capillary jets close to the continuum limit
,”
Nat. Phys.
3
,
737
742
(
2007
).
11.
T.
Si
,
G. B.
Li
,
Q.
Wu
,
Z. Q.
Zhu
,
X. S.
Luo
, and
R. X.
Xu
, “
Optical droplet vaporization of nanoparticle-loaded stimuli-responsive microbubbles
,”
Appl. Phys. Lett.
108
,
111109
(
2016
).
12.
T.
Si
,
C. S.
Yin
,
P.
Gao
,
G. B.
Li
,
H.
Ding
,
X. M.
He
,
B.
Xie
, and
R. X.
Xu
, “
Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompartment microcapsules
,”
Appl. Phys. Lett.
108
,
021601
(
2016
).
13.
T.
Si
,
F.
Li
,
X. Y.
Yin
, and
X. Z.
Yin
, “
Modes in flow focusing and instability of coaxial liquid-gas jets
,”
J. Fluid Mech.
629
,
1
23
(
2009
).
14.
E. J.
Vega
,
J. M.
Montanero
,
M. A.
Herrada
, and
A. M.
Gañán-Calvo
, “
Global and local instability of flow focusing: The influence of the geometry
,”
Phys. Fluids
22
,
064105
(
2010
).
15.
M. A.
Herrada
,
A. M.
Gañán-Calvo
, and
P.
Guillot
, “
Spatiotemporal instability of a confined capillary jet
,”
Phys. Rev. E
78
,
046312
(
2008
).
16.
J. M.
Montanero
,
N.
Rebollo-Muñoz
,
M. A.
Herrada
, and
A. M.
Gañán-Calvo
, “
Global stability of the focusing effect of fluid jet flows
,”
Phys. Rev. E
83
,
036309
(
2011
).
17.
K.
Mu
,
T.
Si
,
E. Q.
Li
,
H.
Ding
, and
R. X.
Xu
, “
Numerical study on droplet generation in axisymmetric flow focusing upon actuation
,”
Phys. Fluids
30
,
012111
(
2018
).
18.
A. M.
Gañán-Calvo
,
J. M.
Gordillo
, and
M.
Pérez-Saborid
, “
Linear stability of co-flowing liquid-gas jets
,”
J. Fluid Mech.
448
,
23
51
(
2001
).
19.
A. M.
Gañán-Calvo
,
J. M.
López-Herrera
, and
P.
Riesco-Chueca
, “
The combination of electrospray and flow focusing
,”
J. Fluid Mech.
566
,
421
445
(
2006
).
20.
T.
Si
,
F.
Li
,
X. Y.
Yin
, and
X. Z.
Yin
, “
Spatial instability of coflowing liquid-gas jets in capillary flow focusing
,”
Phys. Fluids
22
,
112105
(
2010
).
21.
A. M.
Gañán-Calvo
,
C.
Ferrera
, and
J. M.
Montanero
, “
Universal size and shape of viscous capillary jets: Application to gas-focused microjets
,”
J. Fluid Mech.
670
,
427
438
(
2011
).
22.
S. L.
Anna
,
N.
Bontoux
, and
H. A.
Stone
, “
Formation of dispersions using flow focusing in microchannels
,”
Appl. Phys. Lett.
82
,
364
367
(
2003
).
23.
J. M.
Gordillo
,
Z. D.
Cheng
,
A. M.
Gañán-Calvo
,
M.
Márquez
, and
D. A.
Weitz
, “
A new device for the generation of microbubbles
,”
Phys. Fluids
16
,
2828
2834
(
2004
).
24.
A. L.
Rodrigues Costa
,
A.
Gomes
,
F. Y.
Ushikubo
, and
R.
Lopes Cunha
, “
Gellan microgels produced in planar microfluidic devices
,”
J. Food Eng.
209
,
18
25
(
2017
).
25.
F.
Carpignano
,
G.
Rigamonti
, and
S.
Merlo
, “
Characterization of rectangular glass microcapillaries by low-coherence reflectometry
,”
IEEE Photonics Technol. Lett.
27
,
1064
1067
(
2015
).
26.
L.
Martín-Banderas
,
M.
Flores-Mosquera
,
P.
Riesco-Chueca
,
A.
Rodríguez-Gil
,
Á.
Cebolla
,
S.
Chávez
, and
A. M.
Gañán-Calvo
, “
Flow focusing: A versatile technology to produce size-controlled and specific morphology microparticles
,”
Small
7
,
688
692
(
2005
).
27.
T.
Si
,
H. X.
Feng
,
X. S.
Luo
, and
R. X.
Xu
, “
Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device
,”
Microfluidics Nanofluidics
18
,
967
977
(
2015
).
28.
Z. Q.
Zhu
,
T.
Si
, and
R. X.
Xu
, “
Microencapsulation of indocyanine green for potential applications in image-guided drug delivery
,”
Lab Chip
15
,
646
649
(
2015
).
29.
Q.
Wu
,
C. Y.
Yang
,
G. L.
Liu
,
W. H.
Xu
,
Z. Q.
Zhu
,
T.
Si
, and
R. X.
Xu
, “
Multiplex coaxialflow focusing for producing multicomponent Janus microcapsules with tunable material compositions and structural characteristics
,”
Lab Chip
17
,
3168
3175
(
2017
).
30.
E. J.
Vega
,
A. M.
Gañán-Calvo
,
J. M.
Montanero
,
M. G.
Cabezas
, and
M. A.
Herrada
, “
A novel technique for producing metallic microjets and microdrops
,”
Microfluidics Nanofluidics
14
,
101
111
(
2013
).
31.
H.
Zhang
,
A.
Balrama
,
H.
Tiznobaikb
,
D.
Shina
, and
S.
Santhanagopalan
, “
Microencapsulation of molten salt in stable silica shell via a water-limited sol-gel process for high temperature thermal energy storage
,”
Appl. Therm. Eng.
136
,
268
274
(
2018
).
32.
Z.
Guo
,
M.
Lu
,
Y.
Li
,
H.
Pang
,
L.
Lin
,
X.
Liu
, and
C.
Wu
, “
The utilization of drug-polymer interactions for improving the chemical stability of hot-melt extruded solid dispersions
,”
J. Pharm. Pharmacol.
66
,
285
296
(
2013
).
33.
F.
Li
,
X. Y.
Yin
, and
X. Z.
Yin
, “
Instability of a viscous coflowing jet in a radial electric field
,”
J. Fluid Mech.
596
,
285
311
(
2008
).
34.
D. W.
Lim
and
L. G.
Redekopp
, “
Absolute instability conditions for variable density, swirling jet flows
,”
Eur. J. Mech. B/Fluids
17
,
165
185
(
1998
).
35.
H.
González
,
F. J.
García
, and
A.
Castellanos
, “
Stability analysis of conducting jets under acradial electric fields for arbitrary viscosity
,”
Phys. Fluids
15
,
395
407
(
2003
).
36.
J. M.
López-Herrera
,
P.
Riesco-chueca
, and
A. M.
Gañán-Calvo
, “
Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets
,”
Phys. Fluids
17
,
034106
(
2005
).
37.
A. M.
Gañán-Calvo
,
M. A.
Herrada
, and
P.
Garstecki
, “
Bubbling in unbounded coflowing liquids
,”
Phys. Rev. Lett.
96
,
124504
(
2006
).
38.
J.
Rosell-Llompart
and
A. M.
Gañán-Calvo
, “
Turbulence in pneumatic flow focusing and flow blurring regimes
,”
Phys. Rev. E
77
,
036321
(
2008
).
39.
E. Q.
Li
,
S. A.
Al-Otaibi
,
I. U.
Vakarelski
, and
S. T.
Thoroddsen
, “
Satellite formation during bubble transition through an interface between immiscible liquids
,”
J. Fluid Mech.
744
,
R1
(
2014
).
40.
J. N.
Chen
and
S. P.
Lin
, “
Instability of an annular jet surrounded by a viscous gas in a pipe
,”
J. Fluid Mech.
450
,
235
258
(
2002
).
41.
X.
Li
, “
On the instability of plane liquid streams of unequal velocities
,”
Acta Mech.
106
,
137
156
(
1994
).
42.
J.
Shen
and
X.
Li
, “
Instability of an annular viscous liquid jet
,”
Acta Mech.
114
,
167
183
(
1996
).
43.
E. P.
Furlani
, “
Temporal instability of viscous liquid microjets with spatially varying surface tension
,”
J. Phys. A: Math. Gen.
38
,
263
276
(
2005
).
44.
J. R. A.
Pearson
, “
On convection cells induced by surface tension
,”
J. Fluid Mech.
4
,
489
500
(
1958
).
45.
L. A.
Dávalos-Orozco
, “
Thermocapillary instability of liquid sheets in motion
,”
Colloids Surf., A
157
,
223
233
(
1999
).
You do not currently have access to this content.