This paper investigates the impact behavior between water drops with different velocities and cylindrical superhydrophobic surfaces with various diameters and presents two possible outcomes of drop impact, which are asymmetric rebound and stretched breakup. Due to the special cylindrical topology of the surface, drops undergo an asymmetric spreading and retracting process in the azimuthal and the axial direction, which results in three types of asymmetric rebound, including jug-like rebound, wing-like rebound, and rebound breakup. The stretched breakup is observed in the collision of drops with higher impact velocities and smaller cylinder diameters. The diameter ratio D* and Weber number We are found to be the determinants of the bouncing patterns. With the decrease in the diameter ratio D* or the increase in the Weber number We, the bouncing patterns transformed from jug-like rebound through wing-like rebound and finally to stretched breakup. We put forward a modification form of the Weber number (α = We/D*) affected by the diameter ratio D*, indicating the ratio between the inertia force and the surface tension, as the criterion to distinguish the upward rebound from the downward stretch, which helps obtain the linear relation of critical Wecr and D*cr. Furthermore, asymmetric rebound and stretched breakup could effectively shorten the contact time between drops and substrates. The contact time is found to be mainly determined by the dimensionless parameter α. The correlation between the dimensionless contact time and the dimensionless parameter α is demonstrated to be τcαn.

1.
A.
Clarke
, “
Coating on a rough surface
,”
AIChE J.
48
,
2149
2156
(
2002
).
2.
M.
Knoche
, “
Effect of droplet size and carrier volume on performance of foliage-applied herbicides
,”
Crop Prot.
13
,
163
178
(
1994
).
3.
A. E.
Bergles
, “
Recent developments in enhanced heat transfer
,”
Heat Mass Transfer
47
,
1001
1008
(
2011
).
4.
A. L. N.
Moreira
,
A. S.
Moita
, and
M. R.
Panão
, “
Advances and challenges in explaining fuel spray impingement: How much of single droplet impact research is useful?
,”
Prog. Energy Combust. Sci.
36
,
554
580
(
2010
).
5.
M.
Farzaneh
,
Atmospheric Icing of Power Networks
(
Springer
,
The Netherlands
,
2008
).
6.
R.
Zhang
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature
,”
Int. J. Heat Mass Transfer
122
,
395
402
(
2018
).
7.
C.
Neinhuis
and
W.
Barthlott
, “
Characterization and distribution of water-repellent, self-cleaning plant surfaces
,”
Ann. Bot.
79
,
667
677
(
1997
).
8.
W.
Barthlott
and
C.
Neinhuis
, “
Purity of the sacred lotus, or escape from contamination in biological surfaces
,”
Planta
202
,
1
8
(
1997
).
9.
C. E.
Clavijo
,
J.
Crockett
, and
D.
Maynes
, “
Wenzel to Cassie transition during droplet impingement on a superhydrophobic surface
,”
Phys. Rev. Fluids
1
,
073902
(
2016
).
10.
R.
Zhang
,
P.
Hao
, and
F.
He
, “
Drop impact on oblique superhydrophobic surfaces with two-tier roughness
,”
Langmuir
33
,
3556
3567
(
2017
).
11.
R.
Zhang
,
P.
Hao
,
X.
Zhang
, and
F.
He
, “
Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells
,”
Soft Matter
12
,
5808
5817
(
2016
).
12.
T.
Deng
,
K. K.
Varanasi
,
M.
Hsu
,
N.
Bhate
,
C.
Keimel
, and
J.
Stein
, “
Nonwetting of impinging droplets on textured surfaces
,”
Appl. Phys. Lett.
94
,
133109
(
2009
).
13.
L.
Mishchenko
,
B.
Hatton
,
V.
Bahadur
,
J. A.
Taylor
,
T.
Krupenkin
, and
J.
Aizenberg
, “
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
,”
ACS Nano
4
,
7699
7707
(
2010
).
14.
T. L.
Liu
and
C. J.
Kim
, “
Repellent surfaces. Turning a surface superrepellent even to completely wetting liquids
,”
Science
346
,
1096
1100
(
2014
).
15.
D.
Richard
and
D.
Quéré
, “
Bouncing water drops
,”
Europhys. Lett.
50
,
769
(
2000
).
16.
Z.
Wang
,
C.
Lopez
,
A.
Hirsa
, and
N.
Koratkar
, “
Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays
,”
Appl. Phys. Lett.
91
,
023105
(
2007
).
17.
P.
Tsai
,
S.
Pacheco
,
C.
Pirat
,
L.
Lefferts
, and
D.
Lohse
, “
Drop impact upon micro- and nanostructured superhydrophobic surfaces
,”
Langmuir
25
,
12293
12298
(
2009
).
18.
J. C.
Bird
,
R.
Dhiman
,
H. M.
Kwon
, and
K. K.
Varanasi
, “
Reducing the contact time of a bouncing drop
,”
Nature
503
,
385
388
(
2013
).
19.
G.
Anaïs
,
S.
Sean
,
C.
Christophe
, and
Q.
David
, “
Water impacting on superhydrophobic macrotextures
,”
Nat. Commun.
6
,
8001
(
2015
).
20.
C.
Guo
,
D.
Zhao
,
Y.
Sun
,
M.
Wang
, and
Y.
Liu
, “
Droplet impact on anisotropic superhydrophobic surfaces
,”
Langmuir
34
,
3533
3540
(
2018
).
21.
M.
Song
,
Z.
Liu
,
Y.
Ma
,
Z.
Dong
,
Y.
Wang
, and
L.
Jiang
, “
Reducing the contact time using macro anisotropic superhydrophobic surfaces—Effect of parallel wire spacing on the drop impact
,”
NPG Asia Mater.
9
,
e415
(
2017
).
22.
V. N.
Lad
, “
Dynamics of spreading of impinged droplets on the curved-grooved surface
,”
J. Braz. Soc. Mech. Sci. Eng.
39
,
3911
(
2017
).
23.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Morphology of drop impact on a superhydrophobic surface with macro-structures
,”
Phys. Fluids
29
,
082104
(
2017
).
24.
K.
Regulagadda
,
S.
Bakshi
, and
S. K.
Das
, “
Triggering of flow asymmetry by anisotropic deflection of lamella during the impact of a drop onto superhydrophobic surfaces
,”
Phys. Fluids
30
,
072105
(
2018
).
25.
A.
Bordbar
,
A.
Taassob
,
D.
Khojasteh
,
M.
Marengo
, and
R.
Kamali
, “
Maximum spreading and rebound of a droplet impacting onto a spherical surface at low Weber numbers
,”
Langmuir
34
,
5149
5158
(
2018
).
26.
D.
Khojasteh
,
A.
Bordbar
,
R.
Kamali
, and
M.
Marengo
, “
Curvature effect on droplet impacting onto hydrophobic and superhydrophobic spheres
,”
Int. J. Comput. Fluid Dyn.
31
,
310
(
2017
).
27.
Y.
Shen
,
S.
Liu
,
C.
Zhu
,
J.
Tao
,
Z.
Chen
,
H.
Tao
,
L.
Pan
,
G.
Wang
, and
T.
Wang
, “
Bouncing dynamics of impact droplets on the convex superhydrophobic surfaces
,”
Appl. Phys. Lett.
110
,
221601
(
2017
).
28.
J.
Ju
,
Z.
Jin
,
H.
Zhang
,
Z.
Yang
, and
J.
Zhang
, “
The impact and freezing processes of a water droplet on different cold spherical surfaces
,”
Exp. Therm. Fluid Sci.
96
,
430
(
2018
).
29.
S. A.
Banitabaei
and
A.
Amirfazli
, “
Droplet impact onto a solid sphere: Effect of wettability and impact velocity
,”
Phys. Fluids
29
,
062111
(
2017
).
30.
S.
Bakshi
,
I. V.
Roisman
, and
C.
Tropea
, “
Investigations on the impact of a drop onto a small spherical target
,”
Phys. Fluids
19
,
032102
(
2007
).
31.
S.
Chen
and
V.
Bertola
, “
Drop impact on spherical soft surfaces
,”
Phys. Fluids
29
,
082106
(
2017
).
32.
Y.
Liu
,
M.
Andrew
,
L.
Jing
,
J. M.
Yeomans
, and
Z.
Wang
, “
Symmetry-breaking in drop bouncing on curved surfaces
,”
Nat. Commun.
6
,
10034
(
2015
).
33.
M.
Abolghasemibizaki
,
R. L.
Mcmasters
, and
R.
Mohammadi
, “
Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features
,”
J. Colloid Interface Sci.
521
,
17
23
(
2018
).
34.
M.
Andrew
,
Y.
Liu
, and
J.
Yeomans
, “
Variation of the contact time of droplets bouncing on cylindrical ridges with ridge size
,”
Langmuir
33
,
7583
7587
(
2017
).
35.
L. S.
Hung
and
S. C.
Yao
, “
Experimental investigation of the impaction of water droplets on cylindrical objects
,”
Int. J. Multiphase Flow
25
,
1545
1559
(
1999
).
36.
X.
Liu
,
Y.
Zhao
,
S.
Chen
,
S.
Shen
, and
X.
Zhao
, “
Numerical research on the dynamic characteristics of a droplet impacting a hydrophobic tube
,”
Phys. Fluids
29
,
062105
(
2017
).
37.
Z.
Jin
,
Z.
Wang
,
D.
Sui
, and
Z.
Yang
, “
The impact and freezing processes of a water droplet on different inclined cold surfaces
,”
Int. J. Heat Mass Transfer
97
,
211
223
(
2016
).
38.
É.
Lorenceau
,
C.
Clanet
, and
D.
Quéré
, “
Capturing drops with a thin fiber
,”
J. Colloid Interface Sci.
279
,
192
197
(
2004
).
39.
K.
Piroird
,
C.
Clanet
,
E.
Lorenceau
, and
D.
Quéré
, “
Drops impacting inclined fibers
,”
J. Colloid Interface Sci.
334
,
70
74
(
2009
).
40.
E.
Dressaire
,
A.
Sauret
, and
F.
Boulogne
, “
Drop impact on a flexible fiber
,”
Soft Matter
12
,
200
208
(
2015
).
41.
S. G.
Kim
and
W.
Kim
, “
Drop impact on a fiber
,”
Phys. Fluids
28
,
042001
(
2016
).
42.
R.
Zhang
,
X.
Zhang
,
P.
Hao
, and
F.
He
, “
Internal rupture and rapid bouncing induced by submillimeter-scale textures
,”
Phys. Rev. E
95
,
063104
(
2017
).
43.
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Contact time of a bouncing drop
,”
Nature
417
,
811
(
2002
).
44.
C. J.
Patterson
, “
Reducing the contact time of impinging droplets on non-wetting surfaces
,” M.Sc thesis,
Boston University
,
2016
.
45.
A.
Aria
and
M.
Gharib
, “
Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays
,”
Langmuir
30
,
6780
6790
(
2014
).
You do not currently have access to this content.