High-throughput, rapid and homogeneous mixing of microdroplets in a small length scale such as that in a microchannel is of great importance for lab-on-a-chip applications. Various techniques for mixing enhancement in microfluidics have been extensively reported in the literature. One of these techniques is the mixing enhancement with magnetofluidics using ferrofluid, a liquid with dispersed magnetic nanoparticles. However, a systematic study exploring the mixing process of ferrofluid and its influencing parameters is lacking. This study numerically examines the effect of key parameters including magnetic field, mean velocity, and size of a microdroplet on the mixing process. A microfluidic double T-junction with droplets in merging regime is considered. One of the dispersed phases is a ferrofluid containing paramagnetic nanoparticles, while the other carried neutral species. Under an applied magnetic field, the ferrofluid experiences a magnetic force that in turn induces a secondary bulk flow called magnetoconvection. The combination of the induced magnetoconvection and shear-driven circulating flow within a moving droplet improves the mixing efficiency remarkably. Mixing enhancement is maximized for a specific ratio between the magnetic force and the shear force. The dominance of either force would deteriorate the mixing performance. On the other hand, using a magnetic force and a shear force with comparable order of magnitude leads to an effective manipulation of vortices inside the droplet and subsequently causes an optimized particle distribution over the entire droplet. Furthermore, the smaller the droplets, the better the mixing.

1.
S.-Y.
Teh
,
R.
Lin
,
L.-H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
(
2008
).
2.
M.
Sesen
,
T.
Alan
, and
A.
Neild
, “
Microfluidic on-demand droplet merging using surface acoustic waves
,”
Lab Chip
14
,
3325
(
2014
).
3.
Y.
Zhu
and
Q.
Fang
, “
Analytical detection techniques for droplet microfluidics—A review
,”
Anal. Chim. Acta
787
,
24
(
2013
).
4.
Z.
Zhang
,
J.
Xu
, and
C. J. M.
Drapaca
, “
Particle squeezing in narrow confinements
,”
Microfluid. Nanofluid.
22
,
120
(
2018
).
5.
P.
Neužil
,
S.
Giselbrecht
,
K.
Länge
,
T. J.
Huang
, and
A.
Manz
, “
Revisiting lab-on-a-chip technology for drug discovery
,”
Nat. Rev. Drug Discovery
11
,
620
(
2012
).
6.
C.
Chawaree
,
P.
Anna
,
D.
Hansi
,
P.
Pascal
,
B.
Vladimir
, and
G. D.
Andrew
, “
Single-virus droplet microfluidics for high-throughput screening of neutralizing epitopes on HIV particles
,”
Cell Chem. Biol.
24
,
751
(
2017
).
7.
E. Z.
Macosko
,
A.
Basu
,
R.
Satija
,
J.
Nemesh
,
K.
Shekhar
,
M.
Goldman
,
I.
Tirosh
,
A. R.
Bialas
,
N.
Kamitaki
,
E. M.
Martersteck
,
J. J.
Trombetta
,
D. A.
Weitz
,
J. R.
Sanes
,
A. K.
Shalek
,
A.
Regev
, and
S. A.
McCarroll
, “
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
,”
Cell
161
,
1202
(
2015
).
8.
N.
Kashaninejad
,
M. J. A.
Shiddiky
, and
N.-T.
Nguyen
, “
Advances in microfluidics-based assisted reproductive technology: From sperm sorter to reproductive system-on-a-chip
,”
Adv. Biosyst.
2
,
1700197
(
2018
).
9.
D.
Ferraro
,
J.
Champ
,
B.
Teste
,
M.
Serra
,
L.
Malaquin
,
J.-L.
Viovy
,
P.
de Cremoux
, and
S.
Descroix
, “
Microfluidic platform combining droplets and magnetic tweezers: Application to HER2 expression in cancer diagnosis
,”
Sci. Rep.
6
,
25540
(
2016
).
10.
X.
Chen
and
C. L.
Ren
, “
A microfluidic chip integrated with droplet generation, pairing, trapping, merging, mixing and releasing
,”
RSC Adv.
7
,
16738
(
2017
).
11.
E.
Amstad
,
M.
Chemama
,
M.
Eggersdorfer
,
L. R.
Arriaga
,
M. P.
Brenner
, and
D. A.
Weitz
, “
Robust scalable high throughput production of monodisperse drops
,”
Lab Chip
16
,
4163
(
2016
).
12.
T.
Glawdel
,
C.
Elbuken
, and
C.
Ren
, “
Passive droplet trafficking at microfluidic junctions under geometric and flow asymmetries
,”
Lab Chip
11
,
3774
(
2011
).
13.
K.
Zhao
and
D.
Li
, “
Tunable droplet manipulation and characterization by AC-DEP
,”
ACS Appl. Mater. Interfaces
10
,
36572
(
2018
).
14.
R.
Ding
,
W. L.
Ung
,
J. A.
Heyman
, and
D. A.
Weitz
, “
Sensitive and predictable separation of microfluidic droplets by size using in-line passive filter
,”
Biomicrofluidics
11
,
014114
(
2017
).
15.
H.
Geng
,
J.
Feng
,
L. M.
Stabryla
, and
S. K.
Cho
, “
Dielectrowetting manipulation for digital microfluidics: Creating, transporting, splitting, and merging of droplets
,”
Lab Chip
17
,
1060
(
2017
).
16.
M.-A.
Nguyen
,
B.
Srijanto
,
C. P.
Collier
,
S. T.
Retterer
, and
S. A.
Sarles
, “
Hydrodynamic trapping for rapid assembly and in situ electrical characterization of droplet interface bilayer arrays
,”
Lab Chip
16
,
3576
(
2016
).
17.
G.
Yesiloz
,
M. S.
Boybay
, and
C. L.
Ren
, “
Effective thermo-capillary mixing in droplet microfluidics integrated with a microwave heater
,”
Anal. Chem.
89
,
1978
(
2017
).
18.
E.
Samiei
,
M. D.
de Leon Derby
,
A. V.
den Berg
, and
M.
Hoorfar
, “
An electrohydrodynamic technique for rapid mixing in stationary droplets on digital microfluidic platforms
,”
Lab Chip
17
,
227
(
2017
).
19.
J. S.
Sander
,
R. M.
Erb
,
C.
Denier
, and
A. R.
Studart
, “
Magnetic transport, mixing and release of cargo with tailored nanoliter droplets
,”
Adv. Mater.
24
,
2582
(
2012
).
20.
D.
Jiang
,
S.
Lee
,
S. W.
Bae
, and
S. Y.
Park
, “
Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality
,”
Lab Chip
18
,
532
(
2018
).
21.
Q.
Liu
and
B.
Xu
, “
Actuating water droplets on graphene via surface wettability gradients
,”
Langmuir
31
,
9070
(
2015
).
22.
J. K.
Park
and
S.
Kim
, “
Droplet manipulation on a structured shape memory polymer surface
,”
Lab Chip
17
,
1793
(
2017
).
23.
C.
Bakli
,
P. D.
Sree Hari
, and
S.
Chakraborty
, “
Mimicking wettability alterations using temperature gradients for water nanodroplets
,”
Nanoscale
9
,
12509
(
2017
).
24.
A.
Munaz
,
H.
Kamble
,
M. J. A.
Shiddiky
, and
N.-T.
Nguyen
, “
Magnetofluidic micromixer based on a complex rotating magnetic field
,”
RSC Adv.
7
,
52465
(
2017
).
25.
T. Q.
Bui
,
S. N.-C.
Ton
,
A. T.
Duong
, and
H. T.
Tran
, “
Size-dependent magnetic responsiveness of magnetite nanoparticles synthesised by co-precipitation and solvothermal methods
,”
J. Sci.: Adv. Mater. Devices
3
,
107
(
2018
).
26.
W. H.
Chong
,
Y.
Huang
,
T. N.
Wong
,
K. T.
Ooi
, and
G.-P.
Zhu
, “
Magnetic nanorobots, generating vortexes inside nanoliter droplets for effective mixing
,”
Adv. Mater. Technol.
3
,
1700312
(
2018
).
27.
G.
Chen
,
B.
Ji
,
Y.
Gao
,
C.
Wang
,
J.
Wu
,
B.
Zhou
, and
W.
Wen
, “
Towards the rapid and efficient mixing on ‘open-surface’ droplet-based microfluidics via magnetic actuation
,”
Sens. Actuators, B
286
,
181
(
2019
).
28.
Y.
Fu
,
L.
Bai
,
S.
Zhao
,
X.
Zhang
,
Y.
Jin
, and
Y.
Cheng
, “
Simulation of reactive mixing behaviors inside micro-droplets by a lattice Boltzmann method
,”
Chem. Eng. Sci.
181
,
79
(
2018
).
29.
J.
Wang
,
J.
Wang
,
L.
Feng
, and
T.
Lin
, “
Fluid mixing in droplet-based microfluidics with a serpentine microchannel
,”
RSC Adv.
5
,
104138
(
2015
).
30.
H.
Yu
,
T.-B.
Nguyen
,
S. H.
Ng
, and
T.
Tran
, “
Mixing control by frequency variable magnetic micropillar
,”
RSC Adv.
6
,
11822
(
2016
).
31.
N.-T.
Nguyen
, “
Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale
,”
Microfluid. Nanofluid.
12
,
1
(
2012
).
32.
Y.
Zhang
and
T. H.
Wang
, “
Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays
,”
Adv. Mater.
25
,
2903
(
2013
).
33.
T.
Roy
,
A.
Sinha
,
S.
Chakraborty
,
R.
Ganguly
, and
I. K.
Puri
, “
Magnetic microsphere-based mixers for microdroplets
,”
Phys. Fluids
21
,
027101
(
2009
).
34.
V. B.
Varma
,
A.
Ray
,
Z. M.
Wang
,
Z. P.
Wang
, and
R. V.
Ramanujan
, “
Droplet merging on a lab-on-a-chip platform by uniform magnetic fields
,”
Sci. Rep.
6
,
37671
(
2016
).
35.
E.
Olsson
and
G.
Kreiss
, “
A conservative level set method for two phase flow
,”
J. Comput. Phys.
210
,
225
(
2005
).
36.
G.-P.
Zhu
and
N.-T.
Nguyen
, “
Rapid magnetofluidic mixing in a uniform magnetic field
,”
Lab Chip
12
,
4772
(
2012
).
37.
E. Y.
Kenig
,
A. A.
Ganguli
,
T.
Atmakidis
, and
P.
Chasanis
, “
A novel method to capture mass transfer phenomena at free fluid–fluid interfaces
,”
Chem. Eng. Process.: Process Intensif.
50
,
68
(
2011
).
38.
M. J.
Rivera
,
M.
Trujillo
,
V.
Romero-García
,
J. A.
López Molina
, and
E.
Berjano
, “
Numerical resolution of the hyperbolic heat equation using smoothed mathematical functions instead of heaviside and dirac delta distributions
,”
Int. Commun. Heat Mass Transfer
46
,
7
(
2013
).
39.
Q. A.
Pankhurst
,
J.
Connolly
,
S. K.
Jones
, and
J.
Dobson
, “
Applications of magnetic nanoparticles in biomedicine
,”
J. Phys. D: Appl. Phys.
36
,
R167
(
2003
).
40.
O.
Lavrova
,
G.
Matthies
,
T.
Mitkova
,
V.
Polevikov
, and
L.
Tobiska
, “
Numerical treatment of free surface problems in ferrohydrodynamics
,”
J. Phys.: Condens. Matter
18
,
S2657
(
2006
).
41.
J.
Liu
,
Y. F.
Yap
, and
N.-T.
Nguyen
, “
Numerical study of the formation process of ferrofluid droplets
,”
Phys. Fluids
23
,
072008
(
2011
).
42.
B. I.
Kharisov
,
H. V. R.
Dias
,
O. V.
Kharissova
,
A.
Vázquez
,
Y.
Peña
, and
I.
Gómez
, “
Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: Recent trends
,”
RSC Adv.
4
,
45354
(
2014
).
43.
M. R.
Hassan
,
J.
Zhang
, and
C.
Wang
, “
Deformation of a ferrofluid droplet in simple shear flows under uniform magnetic fields
,”
Phys. Fluids
30
,
092002
(
2018
).
44.
L.
Yang
,
S.
Li
,
J.
Liu
, and
J.
Cheng
, “
Fluid mixing in droplet-based microfluidics with T junction and convergent-divergent sinusoidal microchannels
,”
Electrophoresis
39
,
512
(
2018
).
45.
J. R.
Cash
, “
Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs
,”
J. Comput. Appl. Math.
125
,
117
(
2000
).
46.
B.
Stute
,
V.
Krupp
, and
E.
von Lieres
, “
Performance of iterative equation solvers for mass transfer problems in three-dimensional sphere packings in COMSOL
,”
Simul. Modell. Pract. Theory
33
,
115
(
2013
).
47.
I. M. G.
Nicholas
,
H.
Yifan
, and
A. S.
Jennifer
, “
A numerical evaluation of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations
,”
ACM Trans. Math. Software
33
,
10
(
2007
).
48.
W.
Frei
,
Keeping Track of Element Order in Multiphysics Models
(
COMSOL BLOG
,
2016
).
49.
J.
Jouya
,
Z.
Markus
,
L.
Nils
,
W.
Ola
, and
B.
Karl
, “
Optimization of artificial diffusion stabilization techniques and corresponding mesh density distribution in drift dominated transport of diluted species
,” in
Proceedings of the 2012 COMSOL Conference
(
COMSOL
,
2012
).
50.
H.
Shu-Ren
, “
Numerical simulation of immiscible fluids with FEM level set techniques
,” Ph.D. thesis (
Doktors der Naturwissenschaften Universität Dortmund
,
2007
).
51.
M.
Schmitt
and
H.
Stark
, “
Marangoni flow at droplet interfaces: Three-dimensional solution and applications
,”
Phys. Fluids
28
,
012106
(
2016
).
52.
A.
Riaud
,
H.
Zhang
,
X.
Wang
,
K.
Wang
, and
G.
Luo
, “
Numerical study of surfactant dynamics during emulsification in a T-junction microchannel
,”
Langmuir
34
,
4980
(
2018
).
53.
B.
Zheng
,
J. D.
Tice
, and
R. F.
Ismagilov
, “
formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays
,”
Anal. Chem.
76
,
4977
(
2004
).
54.
I.-L.
Ngo
,
T.-D.
Dang
,
C.
Byon
, and
S. W.
Joo
, “
A numerical study on the dynamics of droplet formation in a microfluidic double T-junction
,”
Biomicrofluidics
9
,
024107
(
2015
).
55.
M. M.
Rahman
,
W.
Lee
,
A.
Iyer
, and
S. J.
Williams
, “
Viscous resistance in drop coalescence
,”
Phys. Fluids
31
,
012104
(
2019
).
56.
Z.
Zhang
,
C.
Drapaca
,
D.
Gritsenko
, and
J.
Xu
, “
Pressure of a viscous droplet squeezing through a short circular constriction: An analytical model
,”
Phys. Fluids
30
,
102004
(
2018
).
57.
Z.
Zhang
,
C.
Drapaca
,
X.
Chen
, and
J.
Xu
, “
Droplet squeezing through a narrow constriction: Minimum impulse and critical velocity
,”
Phys. Fluids
29
,
072102
(
2017
).
58.
J.
Dinic
and
V.
Sharma
, “
Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method
,”
Phys. Fluids
31
,
021211
(
2019
).
59.
C. M.
Leong
,
Y.
Gai
, and
S. K. Y.
Tang
, “
Internal flow in droplets within a concentrated emulsion flowing in a microchannel
,”
Phys. Fluids
28
,
112001
(
2016
).
60.
M.
Hein
,
M.
Moskopp
, and
R.
Seemann
, “
Flow field induced particle accumulation inside droplets in rectangular channels
,”
Lab Chip
15
,
2879
(
2015
).
61.
S.
Ma
,
J. M.
Sherwood
,
W. T. S.
Huck
, and
S.
Balabani
, “
On the flow topology inside droplets moving in rectangular microchannels
,”
Lab Chip
14
,
3611
(
2014
).
You do not currently have access to this content.